Optimized high speed nRF24L01+ driver class documentation 1.5.0
TMRh20 2020 - Optimized fork of the nRF24L01+ driver
Loading...
Searching...
No Matches
RF24.cpp
Go to the documentation of this file.
1/*
2 Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 version 2 as published by the Free Software Foundation.
7 */
8
9#include "nRF24L01.h"
10#include "RF24_config.h"
11#include "RF24.h"
12
13/****************************************************************************/
14
15void RF24::csn(bool mode)
16{
17#if defined(RF24_TINY)
18 if (ce_pin != csn_pin) {
19 digitalWrite(csn_pin, mode);
20 }
21 else {
22 if (mode == HIGH) {
23 PORTB |= (1 << PINB2); // SCK->CSN HIGH
24 delayMicroseconds(RF24_CSN_SETTLE_HIGH_DELAY); // allow csn to settle.
25 }
26 else {
27 PORTB &= ~(1 << PINB2); // SCK->CSN LOW
28 delayMicroseconds(RF24_CSN_SETTLE_LOW_DELAY); // allow csn to settle
29 }
30 }
31 // Return, CSN toggle complete
32 return;
33
34#elif defined(ARDUINO) && !defined(RF24_SPI_TRANSACTIONS)
35 // Minimum ideal SPI bus speed is 2x data rate
36 // If we assume 2Mbs data rate and 16Mhz clock, a
37 // divider of 4 is the minimum we want.
38 // CLK:BUS 8Mhz:2Mhz, 16Mhz:4Mhz, or 20Mhz:5Mhz
39
40 #if !defined(SOFTSPI)
41 // applies to SPI_UART and inherent hardware SPI
42 #if defined(RF24_SPI_PTR)
43 _spi->setBitOrder(MSBFIRST);
44 _spi->setDataMode(SPI_MODE0);
45
46 #if !defined(F_CPU) || F_CPU < 20000000
47 _spi->setClockDivider(SPI_CLOCK_DIV2);
48 #elif F_CPU < 40000000
49 _spi->setClockDivider(SPI_CLOCK_DIV4);
50 #elif F_CPU < 80000000
51 _spi->setClockDivider(SPI_CLOCK_DIV8);
52 #elif F_CPU < 160000000
53 _spi->setClockDivider(SPI_CLOCK_DIV16);
54 #elif F_CPU < 320000000
55 _spi->setClockDivider(SPI_CLOCK_DIV32);
56 #elif F_CPU < 640000000
57 _spi->setClockDivider(SPI_CLOCK_DIV64);
58 #elif F_CPU < 1280000000
59 _spi->setClockDivider(SPI_CLOCK_DIV128);
60 #else // F_CPU >= 1280000000
61 #error "Unsupported CPU frequency. Please set correct SPI divider."
62 #endif // F_CPU to SPI_CLOCK_DIV translation
63
64 #else // !defined(RF24_SPI_PTR)
65 _SPI.setBitOrder(MSBFIRST);
66 _SPI.setDataMode(SPI_MODE0);
67
68 #if !defined(F_CPU) || F_CPU < 20000000
69 _SPI.setClockDivider(SPI_CLOCK_DIV2);
70 #elif F_CPU < 40000000
71 _SPI.setClockDivider(SPI_CLOCK_DIV4);
72 #elif F_CPU < 80000000
73 _SPI.setClockDivider(SPI_CLOCK_DIV8);
74 #elif F_CPU < 160000000
75 _SPI.setClockDivider(SPI_CLOCK_DIV16);
76 #elif F_CPU < 320000000
77 _SPI.setClockDivider(SPI_CLOCK_DIV32);
78 #elif F_CPU < 640000000
79 _SPI.setClockDivider(SPI_CLOCK_DIV64);
80 #elif F_CPU < 1280000000
81 _SPI.setClockDivider(SPI_CLOCK_DIV128);
82 #else // F_CPU >= 1280000000
83 #error "Unsupported CPU frequency. Please set correct SPI divider."
84 #endif // F_CPU to SPI_CLOCK_DIV translation
85 #endif // !defined(RF24_SPI_PTR)
86 #endif // !defined(SOFTSPI)
87
88#elif defined(RF24_RPi)
89 if (!mode)
90 _SPI.chipSelect(csn_pin);
91#endif // defined(RF24_RPi)
92
93#if !defined(RF24_LINUX)
94 digitalWrite(csn_pin, mode);
96#else
97 static_cast<void>(mode); // ignore -Wunused-parameter
98#endif // !defined(RF24_LINUX)
99}
100
101/****************************************************************************/
102
103void RF24::ce(bool level)
104{
105#ifndef RF24_LINUX
106 //Allow for 3-pin use on ATTiny
107 if (ce_pin != csn_pin) {
108#endif
109 digitalWrite(ce_pin, level);
110#ifndef RF24_LINUX
111 }
112#endif
113}
114
115/****************************************************************************/
116
118{
119#if defined(RF24_SPI_TRANSACTIONS)
120 #if defined(RF24_SPI_PTR)
121 #if defined(RF24_RP2)
122 _spi->beginTransaction(spi_speed);
123 #else // ! defined (RF24_RP2)
124 _spi->beginTransaction(SPISettings(spi_speed, MSBFIRST, SPI_MODE0));
125 #endif // ! defined (RF24_RP2)
126 #else // !defined(RF24_SPI_PTR)
127 _SPI.beginTransaction(SPISettings(spi_speed, MSBFIRST, SPI_MODE0));
128 #endif // !defined(RF24_SPI_PTR)
129#endif // defined (RF24_SPI_TRANSACTIONS)
130 csn(LOW);
131}
132
133/****************************************************************************/
134
136{
137 csn(HIGH);
138#if defined(RF24_SPI_TRANSACTIONS)
139 #if defined(RF24_SPI_PTR)
140 _spi->endTransaction();
141 #else // !defined(RF24_SPI_PTR)
142 _SPI.endTransaction();
143 #endif // !defined(RF24_SPI_PTR)
144#endif // defined (RF24_SPI_TRANSACTIONS)
145}
146
147/****************************************************************************/
148
149void RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len)
150{
151#if defined(RF24_LINUX) || defined(RF24_RP2)
152 beginTransaction(); //configures the spi settings for RPi, locks mutex and setting csn low
153 uint8_t* prx = spi_rxbuff;
154 uint8_t* ptx = spi_txbuff;
155 uint8_t size = static_cast<uint8_t>(len + 1); // Add register value to transmit buffer
156
157 *ptx++ = reg;
158
159 while (len--) {
160 *ptx++ = RF24_NOP; // Dummy operation, just for reading
161 }
162
163 #if defined(RF24_RP2)
164 _spi->transfernb((const uint8_t*)spi_txbuff, spi_rxbuff, size);
165 #else // !defined (RF24_RP2)
166 _SPI.transfernb(reinterpret_cast<char*>(spi_txbuff), reinterpret_cast<char*>(spi_rxbuff), size);
167 #endif // !defined (RF24_RP2)
168
169 status = *prx++; // status is 1st byte of receive buffer
170
171 // decrement before to skip status byte
172 while (--size) {
173 *buf++ = *prx++;
174 }
175
176 endTransaction(); // unlocks mutex and setting csn high
177
178#else // !defined(RF24_LINUX) && !defined(RF24_RP2)
179
181 #if defined(RF24_SPI_PTR)
182 status = _spi->transfer(reg);
183 while (len--) {
184 *buf++ = _spi->transfer(0xFF);
185 }
186
187 #else // !defined(RF24_SPI_PTR)
188 status = _SPI.transfer(reg);
189 while (len--) {
190 *buf++ = _SPI.transfer(0xFF);
191 }
192
193 #endif // !defined(RF24_SPI_PTR)
195#endif // !defined(RF24_LINUX) && !defined(RF24_RP2)
196}
197
198/****************************************************************************/
199
200uint8_t RF24::read_register(uint8_t reg)
201{
202 uint8_t result;
203
204#if defined(RF24_LINUX) || defined(RF24_RP2)
206
207 uint8_t* prx = spi_rxbuff;
208 uint8_t* ptx = spi_txbuff;
209 *ptx++ = reg;
210 *ptx++ = RF24_NOP; // Dummy operation, just for reading
211
212 #if defined(RF24_RP2)
213 _spi->transfernb((const uint8_t*)spi_txbuff, spi_rxbuff, 2);
214 #else // !defined(RF24_RP2)
215 _SPI.transfernb(reinterpret_cast<char*>(spi_txbuff), reinterpret_cast<char*>(spi_rxbuff), 2);
216 #endif // !defined(RF24_RP2)
217
218 status = *prx; // status is 1st byte of receive buffer
219 result = *++prx; // result is 2nd byte of receive buffer
220
222#else // !defined(RF24_LINUX) && !defined(RF24_RP2)
223
225 #if defined(RF24_SPI_PTR)
226 status = _spi->transfer(reg);
227 result = _spi->transfer(0xff);
228
229 #else // !defined(RF24_SPI_PTR)
230 status = _SPI.transfer(reg);
231 result = _SPI.transfer(0xff);
232
233 #endif // !defined(RF24_SPI_PTR)
235#endif // !defined(RF24_LINUX) && !defined(RF24_RP2)
236
237 return result;
238}
239
240/****************************************************************************/
241
242void RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len)
243{
244#if defined(RF24_LINUX) || defined(RF24_RP2)
246 uint8_t* prx = spi_rxbuff;
247 uint8_t* ptx = spi_txbuff;
248 uint8_t size = static_cast<uint8_t>(len + 1); // Add register value to transmit buffer
249
250 *ptx++ = (W_REGISTER | reg);
251 while (len--) {
252 *ptx++ = *buf++;
253 }
254
255 #if defined(RF24_RP2)
256 _spi->transfernb((const uint8_t*)spi_txbuff, spi_rxbuff, size);
257 #else // !defined(RF24_RP2)
258 _SPI.transfernb(reinterpret_cast<char*>(spi_txbuff), reinterpret_cast<char*>(spi_rxbuff), size);
259 #endif // !defined(RF24_RP2)
260
261 status = *prx; // status is 1st byte of receive buffer
263#else // !defined(RF24_LINUX) && !defined(RF24_RP2)
264
266 #if defined(RF24_SPI_PTR)
267 status = _spi->transfer(W_REGISTER | reg);
268 while (len--) {
269 _spi->transfer(*buf++);
270 }
271
272 #else // !defined(RF24_SPI_PTR)
273 status = _SPI.transfer(W_REGISTER | reg);
274 while (len--) {
275 _SPI.transfer(*buf++);
276 }
277
278 #endif // !defined(RF24_SPI_PTR)
280#endif // !defined(RF24_LINUX) && !defined(RF24_RP2)
281}
282
283/****************************************************************************/
284
285void RF24::write_register(uint8_t reg, uint8_t value)
286{
287 IF_RF24_DEBUG(printf_P(PSTR("write_register(%02x,%02x)\r\n"), reg, value));
288#if defined(RF24_LINUX) || defined(RF24_RP2)
290 uint8_t* prx = spi_rxbuff;
291 uint8_t* ptx = spi_txbuff;
292 *ptx++ = (W_REGISTER | reg);
293 *ptx = value;
294
295 #if defined(RF24_RP2)
296 _spi->transfernb((const uint8_t*)spi_txbuff, spi_rxbuff, 2);
297 #else // !defined(RF24_RP2)
298 _SPI.transfernb(reinterpret_cast<char*>(spi_txbuff), reinterpret_cast<char*>(spi_rxbuff), 2);
299 #endif // !defined(RF24_RP2)
300
301 status = *prx++; // status is 1st byte of receive buffer
303#else // !defined(RF24_LINUX) && !defined(RF24_RP2)
304
306 #if defined(RF24_SPI_PTR)
307 status = _spi->transfer(W_REGISTER | reg);
308 _spi->transfer(value);
309 #else // !defined(RF24_SPI_PTR)
310 status = _SPI.transfer(W_REGISTER | reg);
311 _SPI.transfer(value);
312 #endif // !defined(RF24_SPI_PTR)
314#endif // !defined(RF24_LINUX) && !defined(RF24_RP2)
315}
316
317/****************************************************************************/
318
319void RF24::write_payload(const void* buf, uint8_t data_len, const uint8_t writeType)
320{
321 const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
322
323 uint8_t blank_len = !data_len ? 1 : 0;
325 data_len = rf24_min(data_len, payload_size);
326 blank_len = static_cast<uint8_t>(payload_size - data_len);
327 }
328 else {
329 data_len = rf24_min(data_len, static_cast<uint8_t>(32));
330 }
331
332 //printf("[Writing %u bytes %u blanks]",data_len,blank_len);
333 IF_RF24_DEBUG(printf_P("[Writing %u bytes %u blanks]\n", data_len, blank_len););
334
335#if defined(RF24_LINUX) || defined(RF24_RP2)
337 uint8_t* prx = spi_rxbuff;
338 uint8_t* ptx = spi_txbuff;
339 uint8_t size;
340 size = static_cast<uint8_t>(data_len + blank_len + 1); // Add register value to transmit buffer
341
342 *ptx++ = writeType;
343 while (data_len--) {
344 *ptx++ = *current++;
345 }
346
347 while (blank_len--) {
348 *ptx++ = 0;
349 }
350
351 #if defined(RF24_RP2)
352 _spi->transfernb((const uint8_t*)spi_txbuff, spi_rxbuff, size);
353 #else // !defined(RF24_RP2)
354 _SPI.transfernb(reinterpret_cast<char*>(spi_txbuff), reinterpret_cast<char*>(spi_rxbuff), size);
355 #endif // !defined(RF24_RP2)
356
357 status = *prx; // status is 1st byte of receive buffer
359
360#else // !defined(RF24_LINUX) && !defined(RF24_RP2)
361
363 #if defined(RF24_SPI_PTR)
364 status = _spi->transfer(writeType);
365 while (data_len--) {
366 _spi->transfer(*current++);
367 }
368
369 while (blank_len--) {
370 _spi->transfer(0);
371 }
372
373 #else // !defined(RF24_SPI_PTR)
374 status = _SPI.transfer(writeType);
375 while (data_len--) {
376 _SPI.transfer(*current++);
377 }
378
379 while (blank_len--) {
380 _SPI.transfer(0);
381 }
382
383 #endif // !defined(RF24_SPI_PTR)
385#endif // !defined(RF24_LINUX) && !defined(RF24_RP2)
386}
387
388/****************************************************************************/
389
390void RF24::read_payload(void* buf, uint8_t data_len)
391{
392 uint8_t* current = reinterpret_cast<uint8_t*>(buf);
393
394 uint8_t blank_len = 0;
396 data_len = rf24_min(data_len, payload_size);
397 blank_len = static_cast<uint8_t>(payload_size - data_len);
398 }
399 else {
400 data_len = rf24_min(data_len, static_cast<uint8_t>(32));
401 }
402
403 //printf("[Reading %u bytes %u blanks]",data_len,blank_len);
404
405 IF_RF24_DEBUG(printf_P("[Reading %u bytes %u blanks]\n", data_len, blank_len););
406
407#if defined(RF24_LINUX) || defined(RF24_RP2)
409 uint8_t* prx = spi_rxbuff;
410 uint8_t* ptx = spi_txbuff;
411 uint8_t size;
412 size = static_cast<uint8_t>(data_len + blank_len + 1); // Add register value to transmit buffer
413
414 *ptx++ = R_RX_PAYLOAD;
415 while (--size) {
416 *ptx++ = RF24_NOP;
417 }
418
419 size = static_cast<uint8_t>(data_len + blank_len + 1); // Size has been lost during while, re affect
420
421 #if defined(RF24_RP2)
422 _spi->transfernb((const uint8_t*)spi_txbuff, spi_rxbuff, size);
423 #else // !defined(RF24_RP2)
424 _SPI.transfernb(reinterpret_cast<char*>(spi_txbuff), reinterpret_cast<char*>(spi_rxbuff), size);
425 #endif // !defined(RF24_RP2)
426
427 status = *prx++; // 1st byte is status
428
429 if (data_len > 0) {
430 // Decrement before to skip 1st status byte
431 while (--data_len) {
432 *current++ = *prx++;
433 }
434
435 *current = *prx;
436 }
438#else // !defined(RF24_LINUX) && !defined(RF24_RP2)
439
441 #if defined(RF24_SPI_PTR)
442 status = _spi->transfer(R_RX_PAYLOAD);
443 while (data_len--) {
444 *current++ = _spi->transfer(0xFF);
445 }
446
447 while (blank_len--) {
448 _spi->transfer(0xFF);
449 }
450
451 #else // !defined(RF24_SPI_PTR)
452 status = _SPI.transfer(R_RX_PAYLOAD);
453 while (data_len--) {
454 *current++ = _SPI.transfer(0xFF);
455 }
456
457 while (blank_len--) {
458 _SPI.transfer(0xff);
459 }
460
461 #endif // !defined(RF24_SPI_PTR)
463
464#endif // !defined(RF24_LINUX) && !defined(RF24_RP2)
465}
466
467/****************************************************************************/
468
469uint8_t RF24::flush_rx(void)
470{
471 read_register(FLUSH_RX, (uint8_t*)nullptr, 0);
472 IF_RF24_DEBUG(printf_P("[Flushing RX FIFO]"););
473 return status;
474}
475
476/****************************************************************************/
477
478uint8_t RF24::flush_tx(void)
479{
480 read_register(FLUSH_TX, (uint8_t*)nullptr, 0);
481 IF_RF24_DEBUG(printf_P("[Flushing RX FIFO]"););
482 return status;
483}
484
485/****************************************************************************/
486#if !defined(MINIMAL)
487
488void RF24::printStatus(uint8_t flags)
489{
490 printf_P(PSTR("RX_DR=%x TX_DS=%x TX_DF=%x RX_PIPE=%x TX_FULL=%x\r\n"),
491 (flags & RF24_RX_DR) ? 1 : 0,
492 (flags & RF24_TX_DS) ? 1 : 0,
493 (flags & RF24_TX_DF) ? 1 : 0,
494 (flags >> RX_P_NO) & 0x07,
495 (flags & _BV(TX_FULL)) ? 1 : 0);
496}
497
498/****************************************************************************/
499
500void RF24::print_observe_tx(uint8_t value)
501{
502 printf_P(PSTR("OBSERVE_TX=%02x: PLOS_CNT=%x ARC_CNT=%x\r\n"), value, (value >> PLOS_CNT) & 0x0F, (value >> ARC_CNT) & 0x0F);
503}
504
505/****************************************************************************/
506
507void RF24::print_byte_register(const char* name, uint8_t reg, uint8_t qty)
508{
510 "\t="),
511 name);
512 while (qty--) {
513 printf_P(PSTR(" 0x%02x"), read_register(reg++));
514 }
515 printf_P(PSTR("\r\n"));
516}
517
518/****************************************************************************/
519
520void RF24::print_address_register(const char* name, uint8_t reg, uint8_t qty)
521{
522
524 "\t="),
525 name);
526 while (qty--) {
527 uint8_t* buffer = new uint8_t[addr_width];
528 read_register(reg++, buffer, addr_width);
529
530 printf_P(PSTR(" 0x"));
531 uint8_t* bufptr = buffer + addr_width;
532 while (--bufptr >= buffer) {
533 printf_P(PSTR("%02x"), *bufptr); // NOLINT: clang-tidy seems to emit a false positive about zero-allocated memory here (*bufptr)
534 }
535 delete[] buffer;
536 }
537 printf_P(PSTR("\r\n"));
538}
539
540/****************************************************************************/
541
542uint8_t RF24::sprintf_address_register(char* out_buffer, uint8_t reg, uint8_t qty)
543{
544 uint8_t offset = 0;
545 uint8_t* read_buffer = new uint8_t[addr_width];
546 while (qty--) {
547 read_register(reg++, read_buffer, addr_width);
548 uint8_t* bufptr = read_buffer + addr_width;
549 while (--bufptr >= read_buffer) {
550 offset += sprintf_P(out_buffer + offset, PSTR("%02X"), *bufptr); // NOLINT(clang-analyzer-cplusplus.NewDelete)
551 }
552 }
553 delete[] read_buffer;
554 return offset;
555}
556#endif // !defined(MINIMAL)
557
558/****************************************************************************/
559
560RF24::RF24(rf24_gpio_pin_t _cepin, rf24_gpio_pin_t _cspin, uint32_t _spi_speed)
561 : ce_pin(_cepin),
562 csn_pin(_cspin),
563 spi_speed(_spi_speed),
564 payload_size(32),
565 _is_p_variant(false),
566 _is_p0_rx(false),
567 addr_width(5),
569#if defined FAILURE_HANDLING
571#endif
572 csDelay(5)
573{
574 _init_obj();
575}
576
577/****************************************************************************/
578
579RF24::RF24(uint32_t _spi_speed)
580 : ce_pin(RF24_PIN_INVALID),
581 csn_pin(RF24_PIN_INVALID),
582 spi_speed(_spi_speed),
583 payload_size(32),
584 _is_p_variant(false),
585 _is_p0_rx(false),
586 addr_width(5),
588#if defined FAILURE_HANDLING
590#endif
591 csDelay(5)
592{
593 _init_obj();
594}
595
596/****************************************************************************/
597
598void RF24::_init_obj()
599{
600 // Use a pointer on the Arduino platform
601
602#if defined(RF24_SPI_PTR) && !defined(RF24_RP2)
603 _spi = &SPI;
604#endif // defined (RF24_SPI_PTR)
605
606 if (spi_speed <= 35000) { //Handle old BCM2835 speed constants, default to RF24_SPI_SPEED
607 spi_speed = RF24_SPI_SPEED;
608 }
609}
610
611/****************************************************************************/
612
613void RF24::setChannel(uint8_t channel)
614{
615 const uint8_t max_channel = 125;
616 write_register(RF_CH, rf24_min(channel, max_channel));
617}
618
620{
621 return read_register(RF_CH);
622}
623
624/****************************************************************************/
625
626void RF24::setPayloadSize(uint8_t size)
627{
628 // payload size must be in range [1, 32]
629 payload_size = static_cast<uint8_t>(rf24_max(1, rf24_min(32, size)));
630
631 // write static payload size setting for all pipes
632 for (uint8_t i = 0; i < 6; ++i) {
633 write_register(static_cast<uint8_t>(RX_PW_P0 + i), payload_size);
634 }
635}
636
637/****************************************************************************/
638
640{
641 return payload_size;
642}
643
644/****************************************************************************/
645
646#if !defined(MINIMAL)
647
648static const PROGMEM char rf24_datarate_e_str_0[] = "= 1 MBPS";
649static const PROGMEM char rf24_datarate_e_str_1[] = "= 2 MBPS";
650static const PROGMEM char rf24_datarate_e_str_2[] = "= 250 KBPS";
656static const PROGMEM char rf24_model_e_str_0[] = "nRF24L01";
657static const PROGMEM char rf24_model_e_str_1[] = "nRF24L01+";
658static const PROGMEM char* const rf24_model_e_str_P[] = {
661};
662static const PROGMEM char rf24_crclength_e_str_0[] = "= Disabled";
663static const PROGMEM char rf24_crclength_e_str_1[] = "= 8 bits";
664static const PROGMEM char rf24_crclength_e_str_2[] = "= 16 bits";
670static const PROGMEM char rf24_pa_dbm_e_str_0[] = "= PA_MIN";
671static const PROGMEM char rf24_pa_dbm_e_str_1[] = "= PA_LOW";
672static const PROGMEM char rf24_pa_dbm_e_str_2[] = "= PA_HIGH";
673static const PROGMEM char rf24_pa_dbm_e_str_3[] = "= PA_MAX";
680
681static const PROGMEM char rf24_feature_e_str_on[] = "= Enabled";
682static const PROGMEM char rf24_feature_e_str_allowed[] = "= Allowed";
683static const PROGMEM char rf24_feature_e_str_open[] = " open ";
684static const PROGMEM char rf24_feature_e_str_closed[] = "closed";
692
694{
695
696 #if defined(RF24_LINUX)
697 printf("================ SPI Configuration ================\n");
698 uint8_t bus_ce = static_cast<uint8_t>(csn_pin % 10);
699 uint8_t bus_numb = static_cast<uint8_t>((csn_pin - bus_ce) / 10);
700 printf("CSN Pin\t\t= /dev/spidev%d.%d\n", bus_numb, bus_ce);
701 printf("CE Pin\t\t= Custom GPIO%d\n", ce_pin);
702 #endif
703 printf_P(PSTR("SPI Speedz\t= %d Mhz\n"), static_cast<uint8_t>(spi_speed / 1000000)); //Print the SPI speed on non-Linux devices
704 #if defined(RF24_LINUX)
705 printf("================ NRF Configuration ================\n");
706 #endif // defined(RF24_LINUX)
707
708 uint8_t status = update();
709 printf_P(PSTR("STATUS\t\t= 0x%02x "), status);
710 printStatus(status);
711
712 print_address_register(PSTR("RX_ADDR_P0-1"), RX_ADDR_P0, 2);
713 print_byte_register(PSTR("RX_ADDR_P2-5"), RX_ADDR_P2, 4);
714 print_address_register(PSTR("TX_ADDR\t"), TX_ADDR);
715
716 print_byte_register(PSTR("RX_PW_P0-6"), RX_PW_P0, 6);
717 print_byte_register(PSTR("EN_AA\t"), EN_AA);
718 print_byte_register(PSTR("EN_RXADDR"), EN_RXADDR);
719 print_byte_register(PSTR("RF_CH\t"), RF_CH);
720 print_byte_register(PSTR("RF_SETUP"), RF_SETUP);
721 print_byte_register(PSTR("CONFIG\t"), NRF_CONFIG);
722 print_byte_register(PSTR("DYNPD/FEATURE"), DYNPD, 2);
723
724 printf_P(PSTR("Data Rate\t" PRIPSTR
725 "\r\n"),
726 (char*)(pgm_read_ptr(&rf24_datarate_e_str_P[getDataRate()])));
727 printf_P(PSTR("Model\t\t= " PRIPSTR
728 "\r\n"),
729 (char*)(pgm_read_ptr(&rf24_model_e_str_P[isPVariant()])));
730 printf_P(PSTR("CRC Length\t" PRIPSTR
731 "\r\n"),
732 (char*)(pgm_read_ptr(&rf24_crclength_e_str_P[getCRCLength()])));
733 printf_P(PSTR("PA Power\t" PRIPSTR
734 "\r\n"),
735 (char*)(pgm_read_ptr(&rf24_pa_dbm_e_str_P[getPALevel()])));
736 printf_P(PSTR("ARC\t\t= %d\r\n"), getARC());
737}
738
740{
741
742 #if defined(RF24_LINUX)
743 printf("================ SPI Configuration ================\n");
744 uint8_t bus_ce = static_cast<uint8_t>(csn_pin % 10);
745 uint8_t bus_numb = static_cast<uint8_t>((csn_pin - bus_ce) / 10);
746 printf("CSN Pin\t\t\t= /dev/spidev%d.%d\n", bus_numb, bus_ce);
747 printf("CE Pin\t\t\t= Custom GPIO%d\n", ce_pin);
748 #endif
749 printf_P(PSTR("SPI Frequency\t\t= %d Mhz\n"), static_cast<uint8_t>(spi_speed / 1000000)); //Print the SPI speed on non-Linux devices
750 #if defined(RF24_LINUX)
751 printf("================ NRF Configuration ================\n");
752 #endif // defined(RF24_LINUX)
753
754 uint8_t channel = getChannel();
755 uint16_t frequency = static_cast<uint16_t>(channel + 2400);
756 printf_P(PSTR("Channel\t\t\t= %u (~ %u MHz)\r\n"), channel, frequency);
757 printf_P(PSTR("Model\t\t\t= " PRIPSTR
758 "\r\n"),
759 (char*)(pgm_read_ptr(&rf24_model_e_str_P[isPVariant()])));
760
761 printf_P(PSTR("RF Data Rate\t\t" PRIPSTR
762 "\r\n"),
763 (char*)(pgm_read_ptr(&rf24_datarate_e_str_P[getDataRate()])));
764 printf_P(PSTR("RF Power Amplifier\t" PRIPSTR
765 "\r\n"),
766 (char*)(pgm_read_ptr(&rf24_pa_dbm_e_str_P[getPALevel()])));
767 printf_P(PSTR("RF Low Noise Amplifier\t" PRIPSTR
768 "\r\n"),
769 (char*)(pgm_read_ptr(&rf24_feature_e_str_P[static_cast<uint8_t>((read_register(RF_SETUP) & 1) * 1)])));
770 printf_P(PSTR("CRC Length\t\t" PRIPSTR
771 "\r\n"),
772 (char*)(pgm_read_ptr(&rf24_crclength_e_str_P[getCRCLength()])));
773 printf_P(PSTR("Address Length\t\t= %d bytes\r\n"), (read_register(SETUP_AW) & 3) + 2);
774 printf_P(PSTR("Static Payload Length\t= %d bytes\r\n"), getPayloadSize());
775
776 uint8_t setupRetry = read_register(SETUP_RETR);
777 printf_P(PSTR("Auto Retry Delay\t= %d microseconds\r\n"), (setupRetry >> ARD) * 250 + 250);
778 printf_P(PSTR("Auto Retry Attempts\t= %d maximum\r\n"), setupRetry & 0x0F);
779
780 uint8_t observeTx = read_register(OBSERVE_TX);
781 printf_P(PSTR("Packets lost on\n current channel\t= %d\r\n"), observeTx >> 4);
782 printf_P(PSTR("Retry attempts made for\n last transmission\t= %d\r\n"), observeTx & 0x0F);
783
784 uint8_t features = read_register(FEATURE);
785 printf_P(PSTR("Multicast\t\t" PRIPSTR
786 "\r\n"),
787 (char*)(pgm_read_ptr(&rf24_feature_e_str_P[static_cast<uint8_t>(static_cast<bool>(features & _BV(EN_DYN_ACK)) * 2)])));
788 printf_P(PSTR("Custom ACK Payload\t" PRIPSTR
789 "\r\n"),
790 (char*)(pgm_read_ptr(&rf24_feature_e_str_P[static_cast<uint8_t>(static_cast<bool>(features & _BV(EN_ACK_PAY)) * 1)])));
791
792 uint8_t dynPl = read_register(DYNPD);
793 printf_P(PSTR("Dynamic Payloads\t" PRIPSTR
794 "\r\n"),
795 (char*)(pgm_read_ptr(&rf24_feature_e_str_P[static_cast<uint8_t>((dynPl && (features & _BV(EN_DPL))) * 1)])));
796
797 uint8_t autoAck = read_register(EN_AA);
798 if (autoAck == 0x3F || autoAck == 0) {
799 // all pipes have the same configuration about auto-ack feature
800 printf_P(PSTR("Auto Acknowledgment\t" PRIPSTR
801 "\r\n"),
802 (char*)(pgm_read_ptr(&rf24_feature_e_str_P[static_cast<uint8_t>(static_cast<bool>(autoAck) * 1)])));
803 }
804 else {
805 // representation per pipe
806 printf_P(PSTR("Auto Acknowledgment\t= 0b%c%c%c%c%c%c\r\n"),
807 static_cast<char>(static_cast<bool>(autoAck & _BV(ENAA_P5)) + 48),
808 static_cast<char>(static_cast<bool>(autoAck & _BV(ENAA_P4)) + 48),
809 static_cast<char>(static_cast<bool>(autoAck & _BV(ENAA_P3)) + 48),
810 static_cast<char>(static_cast<bool>(autoAck & _BV(ENAA_P2)) + 48),
811 static_cast<char>(static_cast<bool>(autoAck & _BV(ENAA_P1)) + 48),
812 static_cast<char>(static_cast<bool>(autoAck & _BV(ENAA_P0)) + 48));
813 }
814
815 config_reg = read_register(NRF_CONFIG);
816 printf_P(PSTR("Primary Mode\t\t= %cX\r\n"), config_reg & _BV(PRIM_RX) ? 'R' : 'T');
817 print_address_register(PSTR("TX address\t"), TX_ADDR);
818
819 uint8_t openPipes = read_register(EN_RXADDR);
820 for (uint8_t i = 0; i < 6; ++i) {
821 bool isOpen = openPipes & _BV(i);
822 printf_P(PSTR("pipe %u (" PRIPSTR
823 ") bound"),
824 i, (char*)(pgm_read_ptr(&rf24_feature_e_str_P[isOpen + 3])));
825 if (i < 2) {
826 print_address_register(PSTR(""), static_cast<uint8_t>(RX_ADDR_P0 + i));
827 }
828 else {
829 print_byte_register(PSTR(""), static_cast<uint8_t>(RX_ADDR_P0 + i));
830 }
831 }
832}
833
834/****************************************************************************/
835
836uint16_t RF24::sprintfPrettyDetails(char* debugging_information)
837{
838 const char* format_string = PSTR(
839 "================ SPI Configuration ================\n"
840 "CSN Pin\t\t\t= %d\n"
841 "CE Pin\t\t\t= %d\n"
842 "SPI Frequency\t\t= %d Mhz\n"
843 "================ NRF Configuration ================\n"
844 "Channel\t\t\t= %u (~ %u MHz)\n"
845 "RF Data Rate\t\t" PRIPSTR "\n"
846 "RF Power Amplifier\t" PRIPSTR "\n"
847 "RF Low Noise Amplifier\t" PRIPSTR "\n"
848 "CRC Length\t\t" PRIPSTR "\n"
849 "Address Length\t\t= %d bytes\n"
850 "Static Payload Length\t= %d bytes\n"
851 "Auto Retry Delay\t= %d microseconds\n"
852 "Auto Retry Attempts\t= %d maximum\n"
853 "Packets lost on\n current channel\t= %d\r\n"
854 "Retry attempts made for\n last transmission\t= %d\r\n"
855 "Multicast\t\t" PRIPSTR "\n"
856 "Custom ACK Payload\t" PRIPSTR "\n"
857 "Dynamic Payloads\t" PRIPSTR "\n"
858 "Auto Acknowledgment\t");
859 const char* format_str2 = PSTR("\nPrimary Mode\t\t= %cX\nTX address\t\t= 0x");
860 const char* format_str3 = PSTR("\nPipe %d (" PRIPSTR ") bound\t= 0x");
861
862 uint16_t offset = sprintf_P(
863 debugging_information, format_string, csn_pin, ce_pin,
864 static_cast<uint8_t>(spi_speed / 1000000), getChannel(),
865 static_cast<uint16_t>(getChannel() + 2400),
866 (char*)(pgm_read_ptr(&rf24_datarate_e_str_P[getDataRate()])),
867 (char*)(pgm_read_ptr(&rf24_pa_dbm_e_str_P[getPALevel()])),
868 (char*)(pgm_read_ptr(&rf24_feature_e_str_P[static_cast<uint8_t>((read_register(RF_SETUP) & 1) * 1)])),
869 (char*)(pgm_read_ptr(&rf24_crclength_e_str_P[getCRCLength()])),
870 ((read_register(SETUP_AW) & 3) + 2), getPayloadSize(),
871 ((read_register(SETUP_RETR) >> ARD) * 250 + 250),
873 (read_register(OBSERVE_TX) & 0x0F),
874 (char*)(pgm_read_ptr(&rf24_feature_e_str_P[static_cast<uint8_t>(static_cast<bool>(read_register(FEATURE) & _BV(EN_DYN_ACK)) * 2)])),
875 (char*)(pgm_read_ptr(&rf24_feature_e_str_P[static_cast<uint8_t>(static_cast<bool>(read_register(FEATURE) & _BV(EN_ACK_PAY)) * 1)])),
876 (char*)(pgm_read_ptr(&rf24_feature_e_str_P[static_cast<uint8_t>((read_register(DYNPD) && (read_register(FEATURE) & _BV(EN_DPL))) * 1)])));
877 uint8_t autoAck = read_register(EN_AA);
878 if (autoAck == 0x3F || autoAck == 0) {
879 // all pipes have the same configuration about auto-ack feature
880 offset += sprintf_P(
881 debugging_information + offset, PSTR("" PRIPSTR ""),
882 (char*)(pgm_read_ptr(&rf24_feature_e_str_P[static_cast<uint8_t>(static_cast<bool>(autoAck) * 1)])));
883 }
884 else {
885 // representation per pipe
886 offset += sprintf_P(
887 debugging_information + offset, PSTR("= 0b%c%c%c%c%c%c"),
888 static_cast<char>(static_cast<bool>(autoAck & _BV(ENAA_P5)) + 48),
889 static_cast<char>(static_cast<bool>(autoAck & _BV(ENAA_P4)) + 48),
890 static_cast<char>(static_cast<bool>(autoAck & _BV(ENAA_P3)) + 48),
891 static_cast<char>(static_cast<bool>(autoAck & _BV(ENAA_P2)) + 48),
892 static_cast<char>(static_cast<bool>(autoAck & _BV(ENAA_P1)) + 48),
893 static_cast<char>(static_cast<bool>(autoAck & _BV(ENAA_P0)) + 48));
894 }
895 offset += sprintf_P(
896 debugging_information + offset, format_str2,
897 (read_register(NRF_CONFIG) & _BV(PRIM_RX) ? 'R' : 'T'));
898 offset += sprintf_address_register(debugging_information + offset, TX_ADDR);
899 uint8_t openPipes = read_register(EN_RXADDR);
900 for (uint8_t i = 0; i < 6; ++i) {
901 offset += sprintf_P(
902 debugging_information + offset, format_str3,
903 i, ((char*)(pgm_read_ptr(&rf24_feature_e_str_P[static_cast<bool>(openPipes & _BV(i)) + 3]))));
904 if (i < 2) {
905 offset += sprintf_address_register(
906 debugging_information + offset, static_cast<uint8_t>(RX_ADDR_P0 + i));
907 }
908 else {
909 offset += sprintf_P(
910 debugging_information + offset, PSTR("%02X"),
911 read_register(static_cast<uint8_t>(RX_ADDR_P0 + i)));
912 }
913 }
914 return offset;
915}
916
917/****************************************************************************/
918
919void RF24::encodeRadioDetails(uint8_t* encoded_details)
920{
921 uint8_t end = FEATURE + 1;
922 for (uint8_t i = NRF_CONFIG; i < end; ++i) {
923 if (i == RX_ADDR_P0 || i == RX_ADDR_P1 || i == TX_ADDR) {
924 // get 40-bit registers
925 read_register(i, encoded_details, 5);
926 encoded_details += 5;
927 }
928 else if (i != 0x18 && i != 0x19 && i != 0x1a && i != 0x1b) { // skip undocumented registers
929 // get single byte registers
930 *encoded_details++ = read_register(i);
931 }
932 }
933 *encoded_details++ = ce_pin >> 4;
934 *encoded_details++ = ce_pin & 0xFF;
935 *encoded_details++ = csn_pin >> 4;
936 *encoded_details++ = csn_pin & 0xFF;
937 *encoded_details = static_cast<uint8_t>((spi_speed / 1000000) | _BV(_is_p_variant * 4));
938}
939#endif // !defined(MINIMAL)
940
941/****************************************************************************/
942#if defined(RF24_SPI_PTR) || defined(DOXYGEN_FORCED)
943// does not apply to RF24_LINUX
944
945bool RF24::begin(_SPI* spiBus)
946{
947 _spi = spiBus;
948 return _init_pins() && _init_radio();
949}
950
951/****************************************************************************/
952
953bool RF24::begin(_SPI* spiBus, rf24_gpio_pin_t _cepin, rf24_gpio_pin_t _cspin)
954{
955 ce_pin = _cepin;
956 csn_pin = _cspin;
957 return begin(spiBus);
958}
959
960#endif // defined (RF24_SPI_PTR) || defined (DOXYGEN_FORCED)
961
962/****************************************************************************/
963
965{
966 ce_pin = _cepin;
967 csn_pin = _cspin;
968 return begin();
969}
970
971/****************************************************************************/
972
973bool RF24::begin(void)
974{
975#if defined(RF24_LINUX)
976 #if defined(RF24_RPi)
977 switch (csn_pin) { // Ensure valid hardware CS pin
978 case 0: break;
979 case 1: break;
980 // Allow BCM2835 enums for RPi
981 case 8: csn_pin = 0; break;
982 case 7: csn_pin = 1; break;
983 case 18: csn_pin = 10; break; // to make it work on SPI1
984 case 17: csn_pin = 11; break;
985 case 16: csn_pin = 12; break;
986 default: csn_pin = 0; break;
987 }
988 #endif // RF24_RPi
989
990 _SPI.begin(csn_pin, spi_speed);
991
992#elif defined(XMEGA_D3)
993 _spi->begin(csn_pin);
994
995#elif defined(RF24_RP2)
996 _spi = new SPI();
997 _spi->begin(PICO_DEFAULT_SPI ? spi1 : spi0);
998
999#else // using an Arduino platform || defined (LITTLEWIRE)
1000
1001 #if defined(RF24_SPI_PTR)
1002 _spi->begin();
1003 #else // !defined(RF24_SPI_PTR)
1004 _SPI.begin();
1005 #endif // !defined(RF24_SPI_PTR)
1006
1007#endif // !defined(XMEGA_D3) && !defined(RF24_LINUX)
1008
1009 return _init_pins() && _init_radio();
1010}
1011
1012/****************************************************************************/
1013
1014bool RF24::_init_pins()
1015{
1016 if (!isValid()) {
1017 // didn't specify the CSN & CE pins to c'tor nor begin()
1018 return false;
1019 }
1020
1021#if defined(RF24_LINUX)
1022
1023 pinMode(ce_pin, OUTPUT);
1024 ce(LOW);
1025 delay(100);
1026
1027#elif defined(LITTLEWIRE)
1028 pinMode(csn_pin, OUTPUT);
1029 csn(HIGH);
1030
1031#elif defined(XMEGA_D3)
1032 if (ce_pin != csn_pin) {
1033 pinMode(ce_pin, OUTPUT);
1034 };
1035 ce(LOW);
1036 csn(HIGH);
1037 delay(200);
1038
1039#else // using an Arduino platform
1040
1041 // Initialize pins
1042 if (ce_pin != csn_pin) {
1043 pinMode(ce_pin, OUTPUT);
1044 pinMode(csn_pin, OUTPUT);
1045 }
1046
1047 ce(LOW);
1048 csn(HIGH);
1049
1050 #if defined(__ARDUINO_X86__)
1051 delay(100);
1052 #endif
1053#endif // !defined(XMEGA_D3) && !defined(LITTLEWIRE) && !defined(RF24_LINUX)
1054
1055 return true; // assuming pins are connected properly
1056}
1057
1058/****************************************************************************/
1059
1060bool RF24::_init_radio()
1061{
1062 // Must allow the radio time to settle else configuration bits will not necessarily stick.
1063 // This is actually only required following power up but some settling time also appears to
1064 // be required after resets too. For full coverage, we'll always assume the worst.
1065 // Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped.
1066 // Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure.
1067 // WARNING: Delay is based on P-variant whereby non-P *may* require different timing.
1068 delay(5);
1069
1070 // Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
1071 // WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
1072 // sizes must never be used. See datasheet for a more complete explanation.
1073 setRetries(5, 15);
1074
1075 // Then set the data rate to the slowest (and most reliable) speed supported by all hardware.
1077
1078 // detect if is a plus variant & use old toggle features command accordingly
1079 uint8_t before_toggle = read_register(FEATURE);
1080 toggle_features();
1081 uint8_t after_toggle = read_register(FEATURE);
1082 _is_p_variant = before_toggle == after_toggle;
1083 if (after_toggle) {
1084 if (_is_p_variant) {
1085 // module did not experience power-on-reset (#401)
1086 toggle_features();
1087 }
1088 // allow use of multicast parameter and dynamic payloads by default
1089 write_register(FEATURE, 0);
1090 }
1091 ack_payloads_enabled = false; // ack payloads disabled by default
1092 write_register(DYNPD, 0); // disable dynamic payloads by default (for all pipes)
1094 write_register(EN_AA, 0x3F); // enable auto-ack on all pipes
1095 write_register(EN_RXADDR, 3); // only open RX pipes 0 & 1
1096 setPayloadSize(32); // set static payload size to 32 (max) bytes by default
1097 setAddressWidth(5); // set default address length to (max) 5 bytes
1098
1099 // Set up default configuration. Callers can always change it later.
1100 // This channel should be universally safe and not bleed over into adjacent
1101 // spectrum.
1102 setChannel(76);
1103
1104 // Reset current status
1105 // Notice reset and flush is the last thing we do
1106 write_register(NRF_STATUS, RF24_IRQ_ALL);
1107
1108 // Flush buffers
1109 flush_rx();
1110 flush_tx();
1111
1112 // Clear CONFIG register:
1113 // Reflect all IRQ events on IRQ pin
1114 // Enable PTX
1115 // Power Up
1116 // 16-bit CRC (CRC required by auto-ack)
1117 // Do not write CE high so radio will remain in standby I mode
1118 // PTX should use only 22uA of power
1119 write_register(NRF_CONFIG, (_BV(EN_CRC) | _BV(CRCO)));
1120 config_reg = read_register(NRF_CONFIG);
1121
1122 powerUp();
1123
1124 // if config is not set correctly then there was a bad response from module
1125 return config_reg == (_BV(EN_CRC) | _BV(CRCO) | _BV(PWR_UP)) ? true : false;
1126}
1127
1128/****************************************************************************/
1129
1131{
1132 return read_register(SETUP_AW) == (addr_width - static_cast<uint8_t>(2));
1133}
1134
1135/****************************************************************************/
1136
1138{
1139 return ce_pin != RF24_PIN_INVALID && csn_pin != RF24_PIN_INVALID;
1140}
1141
1142/****************************************************************************/
1143
1145{
1146#if !defined(RF24_TINY) && !defined(LITTLEWIRE)
1147 powerUp();
1148#endif
1149 config_reg |= _BV(PRIM_RX);
1150 write_register(NRF_CONFIG, config_reg);
1151 write_register(NRF_STATUS, RF24_IRQ_ALL);
1152 ce(HIGH);
1153
1154 // Restore the pipe0 address, if exists
1155 if (_is_p0_rx) {
1156 write_register(RX_ADDR_P0, pipe0_reading_address, addr_width);
1157 }
1158 else {
1160 }
1161}
1162
1163/****************************************************************************/
1164
1165static const PROGMEM uint8_t child_pipe_enable[] = {ERX_P0, ERX_P1, ERX_P2,
1166 ERX_P3, ERX_P4, ERX_P5};
1167
1169{
1170 ce(LOW);
1171
1172 //delayMicroseconds(100);
1173 delayMicroseconds(static_cast<int>(txDelay));
1175 flush_tx();
1176 }
1177
1178 config_reg = static_cast<uint8_t>(config_reg & ~_BV(PRIM_RX));
1179 write_register(NRF_CONFIG, config_reg);
1180
1181#if defined(RF24_TINY) || defined(LITTLEWIRE)
1182 // for 3 pins solution TX mode is only left with additional powerDown/powerUp cycle
1183 if (ce_pin == csn_pin) {
1184 powerDown();
1185 powerUp();
1186 }
1187#endif
1188 write_register(RX_ADDR_P0, pipe0_writing_address, addr_width);
1189 write_register(EN_RXADDR, static_cast<uint8_t>(read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[0])))); // Enable RX on pipe0
1190}
1191
1192/****************************************************************************/
1193
1194void RF24::stopListening(const uint64_t txAddress)
1195{
1196 memcpy(pipe0_writing_address, &txAddress, addr_width);
1197 stopListening();
1198 write_register(TX_ADDR, pipe0_writing_address, addr_width);
1199}
1200
1201/****************************************************************************/
1202
1203void RF24::stopListening(const uint8_t* txAddress)
1204{
1205 memcpy(pipe0_writing_address, txAddress, addr_width);
1206 stopListening();
1207 write_register(TX_ADDR, pipe0_writing_address, addr_width);
1208}
1209
1210/****************************************************************************/
1211
1213{
1214 ce(LOW); // Guarantee CE is low on powerDown
1215 config_reg = static_cast<uint8_t>(config_reg & ~_BV(PWR_UP));
1216 write_register(NRF_CONFIG, config_reg);
1217}
1218
1219/****************************************************************************/
1220
1221//Power up now. Radio will not power down unless instructed by MCU for config changes etc.
1223{
1224 // if not powered up then power up and wait for the radio to initialize
1225 if (!(config_reg & _BV(PWR_UP))) {
1226 config_reg |= _BV(PWR_UP);
1227 write_register(NRF_CONFIG, config_reg);
1228
1229 // For nRF24L01+ to go from power down mode to TX or RX mode it must first pass through stand-by mode.
1230 // There must be a delay of Tpd2stby (see Table 16.) after the nRF24L01+ leaves power down mode before
1231 // the CEis set high. - Tpd2stby can be up to 5ms per the 1.0 datasheet
1233 }
1234}
1235
1236/******************************************************************/
1237#if defined(FAILURE_HANDLING) || defined(RF24_LINUX)
1238
1239void RF24::errNotify()
1240{
1241 #if defined(RF24_DEBUG) || defined(RF24_LINUX)
1242 printf_P(PSTR("RF24 HARDWARE FAIL: Radio not responding, verify pin connections, wiring, etc.\r\n"));
1243 #endif
1244 #if defined(FAILURE_HANDLING)
1245 failureDetected = 1;
1246 #else
1247 delay(5000);
1248 #endif
1249}
1250
1251#endif
1252/******************************************************************/
1253
1254//Similar to the previous write, clears the interrupt flags
1255bool RF24::write(const void* buf, uint8_t len, const bool multicast)
1256{
1257 //Start Writing
1258 startFastWrite(buf, len, multicast);
1259
1260//Wait until complete or failed
1261#if defined(FAILURE_HANDLING) || defined(RF24_LINUX)
1262 uint32_t timer = millis();
1263#endif // defined(FAILURE_HANDLING) || defined(RF24_LINUX)
1264
1265 while (!(update() & (RF24_TX_DS | RF24_TX_DF))) {
1266#if defined(FAILURE_HANDLING) || defined(RF24_LINUX)
1267 if (millis() - timer > 95) {
1268 errNotify();
1269 #if defined(FAILURE_HANDLING)
1270 return 0;
1271 #else
1272 delay(100);
1273 #endif
1274 }
1275#endif
1276 }
1277
1278 ce(LOW);
1279
1280 write_register(NRF_STATUS, RF24_IRQ_ALL);
1281
1282 //Max retries exceeded
1283 if (status & RF24_TX_DF) {
1284 flush_tx(); // Only going to be 1 packet in the FIFO at a time using this method, so just flush
1285 return 0;
1286 }
1287 //TX OK 1 or 0
1288 return 1;
1289}
1290
1291bool RF24::write(const void* buf, uint8_t len)
1292{
1293 return write(buf, len, 0);
1294}
1295
1296/****************************************************************************/
1297
1298//For general use, the interrupt flags are not important to clear
1299bool RF24::writeBlocking(const void* buf, uint8_t len, uint32_t timeout)
1300{
1301 //Block until the FIFO is NOT full.
1302 //Keep track of the MAX retries and set auto-retry if seeing failures
1303 //This way the FIFO will fill up and allow blocking until packets go through
1304 //The radio will auto-clear everything in the FIFO as long as CE remains high
1305
1306 uint32_t timer = millis(); // Get the time that the payload transmission started
1307
1308 while (update() & _BV(TX_FULL)) { // Blocking only if FIFO is full. This will loop and block until TX is successful or timeout
1309
1310 if (status & RF24_TX_DF) { // If MAX Retries have been reached
1311 reUseTX(); // Set re-transmit and clear the MAX_RT interrupt flag
1312 if (millis() - timer > timeout) {
1313 return 0; // If this payload has exceeded the user-defined timeout, exit and return 0
1314 }
1315 }
1316#if defined(FAILURE_HANDLING) || defined(RF24_LINUX)
1317 if (millis() - timer > (timeout + 95)) {
1318 errNotify();
1319 #if defined(FAILURE_HANDLING)
1320 return 0;
1321 #endif
1322 }
1323#endif
1324 }
1325
1326 //Start Writing
1327 startFastWrite(buf, len, 0); // Write the payload if a buffer is clear
1328
1329 return 1; // Return 1 to indicate successful transmission
1330}
1331
1332/****************************************************************************/
1333
1335{
1336 ce(LOW);
1337 write_register(NRF_STATUS, RF24_TX_DF); //Clear max retry flag
1338 read_register(REUSE_TX_PL, (uint8_t*)nullptr, 0);
1339 IF_RF24_DEBUG(printf_P("[Reusing payload in TX FIFO]"););
1340 ce(HIGH); //Re-Transfer packet
1341}
1342
1343/****************************************************************************/
1344
1345bool RF24::writeFast(const void* buf, uint8_t len, const bool multicast)
1346{
1347 //Block until the FIFO is NOT full.
1348 //Keep track of the MAX retries and set auto-retry if seeing failures
1349 //Return 0 so the user can control the retries and set a timer or failure counter if required
1350 //The radio will auto-clear everything in the FIFO as long as CE remains high
1351
1352#if defined(FAILURE_HANDLING) || defined(RF24_LINUX)
1353 uint32_t timer = millis();
1354#endif
1355
1356 //Blocking only if FIFO is full. This will loop and block until TX is successful or fail
1357 while (update() & _BV(TX_FULL)) {
1358 if (status & RF24_TX_DF) {
1359 return 0; //Return 0. The previous payload has not been retransmitted
1360 // From the user perspective, if you get a 0, call txStandBy()
1361 }
1362#if defined(FAILURE_HANDLING) || defined(RF24_LINUX)
1363 if (millis() - timer > 95) {
1364 errNotify();
1365 #if defined(FAILURE_HANDLING)
1366 return 0;
1367 #endif // defined(FAILURE_HANDLING)
1368 }
1369#endif
1370 }
1371 startFastWrite(buf, len, multicast); // Start Writing
1372
1373 return 1;
1374}
1375
1376bool RF24::writeFast(const void* buf, uint8_t len)
1377{
1378 return writeFast(buf, len, 0);
1379}
1380
1381/****************************************************************************/
1382
1383//Per the documentation, we want to set PTX Mode when not listening. Then all we do is write data and set CE high
1384//In this mode, if we can keep the FIFO buffers loaded, packets will transmit immediately (no 130us delay)
1385//Otherwise we enter Standby-II mode, which is still faster than standby mode
1386//Also, we remove the need to keep writing the config register over and over and delaying for 150 us each time if sending a stream of data
1387
1388void RF24::startFastWrite(const void* buf, uint8_t len, const bool multicast, bool startTx)
1389{ //TMRh20
1390
1391 write_payload(buf, len, multicast ? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD);
1392 if (startTx) {
1393 ce(HIGH);
1394 }
1395}
1396
1397/****************************************************************************/
1398
1399//Added the original startWrite back in so users can still use interrupts, ack payloads, etc
1400//Allows the library to pass all tests
1401bool RF24::startWrite(const void* buf, uint8_t len, const bool multicast)
1402{
1403
1404 // Send the payload
1405 write_payload(buf, len, multicast ? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD);
1406 ce(HIGH);
1407#if !defined(F_CPU) || F_CPU > 20000000
1409#endif
1410#ifdef ARDUINO_ARCH_STM32
1411 if (F_CPU > 20000000) {
1413 }
1414#endif
1415 ce(LOW);
1416 return !(status & _BV(TX_FULL));
1417}
1418
1419/****************************************************************************/
1420
1422{
1424}
1425
1426/****************************************************************************/
1427
1429{
1430 uint8_t state = (read_register(FIFO_STATUS) >> (4 * about_tx)) & 3;
1431 return static_cast<rf24_fifo_state_e>(state);
1432}
1433
1434/****************************************************************************/
1435
1436bool RF24::isFifo(bool about_tx, bool check_empty)
1437{
1438 return static_cast<bool>(static_cast<uint8_t>(isFifo(about_tx)) & _BV(!check_empty));
1439}
1440
1441/****************************************************************************/
1442
1444{
1445
1446#if defined(FAILURE_HANDLING) || defined(RF24_LINUX)
1447 uint32_t timeout = millis();
1448#endif
1449 while (!(read_register(FIFO_STATUS) & _BV(TX_EMPTY))) {
1450 if (status & RF24_TX_DF) {
1451 write_register(NRF_STATUS, RF24_TX_DF);
1452 ce(LOW);
1453 flush_tx(); //Non blocking, flush the data
1454 return 0;
1455 }
1456#if defined(FAILURE_HANDLING) || defined(RF24_LINUX)
1457 if (millis() - timeout > 95) {
1458 errNotify();
1459 #if defined(FAILURE_HANDLING)
1460 return 0;
1461 #endif
1462 }
1463#endif
1464 }
1465
1466 ce(LOW); //Set STANDBY-I mode
1467 return 1;
1468}
1469
1470/****************************************************************************/
1471
1472bool RF24::txStandBy(uint32_t timeout, bool startTx)
1473{
1474
1475 if (startTx) {
1476 stopListening();
1477 ce(HIGH);
1478 }
1479 uint32_t start = millis();
1480
1481 while (!(read_register(FIFO_STATUS) & _BV(TX_EMPTY))) {
1482 if (status & RF24_TX_DF) {
1483 write_register(NRF_STATUS, RF24_TX_DF);
1484 ce(LOW); // Set re-transmit
1485 ce(HIGH);
1486 if (millis() - start >= timeout) {
1487 ce(LOW);
1488 flush_tx();
1489 return 0;
1490 }
1491 }
1492#if defined(FAILURE_HANDLING) || defined(RF24_LINUX)
1493 if (millis() - start > (timeout + 95)) {
1494 errNotify();
1495 #if defined(FAILURE_HANDLING)
1496 return 0;
1497 #endif
1498 }
1499#endif
1500 }
1501
1502 ce(LOW); //Set STANDBY-I mode
1503 return 1;
1504}
1505
1506/****************************************************************************/
1507
1508void RF24::maskIRQ(bool tx, bool fail, bool rx)
1509{
1510 /* clear the interrupt flags */
1511 config_reg = static_cast<uint8_t>(config_reg & ~(1 << MASK_MAX_RT | 1 << MASK_TX_DS | 1 << MASK_RX_DR));
1512 /* set the specified interrupt flags */
1513 config_reg = static_cast<uint8_t>(config_reg | fail << MASK_MAX_RT | tx << MASK_TX_DS | rx << MASK_RX_DR);
1514 write_register(NRF_CONFIG, config_reg);
1515}
1516
1517/****************************************************************************/
1518
1520{
1521 uint8_t result = read_register(R_RX_PL_WID);
1522
1523 if (result > 32 || !result) {
1524 flush_rx();
1525 return 0;
1526 }
1527 return result;
1528}
1529
1530/****************************************************************************/
1531
1533{
1534 return (read_register(FIFO_STATUS) & 1) == 0;
1535}
1536
1537/****************************************************************************/
1538
1539bool RF24::available(uint8_t* pipe_num)
1540{
1541 if (available()) { // if RX FIFO is not empty
1542 *pipe_num = (update() >> RX_P_NO) & 0x07;
1543 return 1;
1544 }
1545 return 0;
1546}
1547
1548/****************************************************************************/
1549
1550void RF24::read(void* buf, uint8_t len)
1551{
1552
1553 // Fetch the payload
1554 read_payload(buf, len);
1555
1556 //Clear the only applicable interrupt flags
1557 write_register(NRF_STATUS, RF24_RX_DR);
1558}
1559
1560/****************************************************************************/
1561
1562void RF24::whatHappened(bool& tx_ok, bool& tx_fail, bool& rx_ready)
1563{
1564 // Read the status & reset the status in one easy call
1565 // Or is that such a good idea?
1566 write_register(NRF_STATUS, RF24_IRQ_ALL);
1567
1568 // Report to the user what happened
1569 tx_ok = status & RF24_TX_DS;
1570 tx_fail = status & RF24_TX_DF;
1571 rx_ready = status & RF24_RX_DR;
1572}
1573
1574/****************************************************************************/
1575
1576uint8_t RF24::clearStatusFlags(uint8_t flags)
1577{
1578 write_register(NRF_STATUS, flags & RF24_IRQ_ALL);
1579 return status;
1580}
1581
1582/****************************************************************************/
1583
1584void RF24::setStatusFlags(uint8_t flags)
1585{
1586 // flip the `flags` to translate from "human understanding"
1587 config_reg = (config_reg & ~RF24_IRQ_ALL) | (~flags & RF24_IRQ_ALL);
1588 write_register(NRF_CONFIG, config_reg);
1589}
1590
1591/****************************************************************************/
1592
1594{
1595 return status;
1596}
1597
1598/****************************************************************************/
1599
1601{
1602 read_register(RF24_NOP, (uint8_t*)nullptr, 0);
1603 return status;
1604}
1605
1606/****************************************************************************/
1607
1608void RF24::openWritingPipe(uint64_t value)
1609{
1610 // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
1611 // expects it LSB first too, so we're good.
1612
1613 write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), addr_width);
1614 write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), addr_width);
1615 memcpy(pipe0_writing_address, &value, addr_width);
1616}
1617
1618/****************************************************************************/
1619
1620void RF24::openWritingPipe(const uint8_t* address)
1621{
1622 // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
1623 // expects it LSB first too, so we're good.
1624 write_register(RX_ADDR_P0, address, addr_width);
1625 write_register(TX_ADDR, address, addr_width);
1626 memcpy(pipe0_writing_address, address, addr_width);
1627}
1628
1629/****************************************************************************/
1630
1633
1634void RF24::openReadingPipe(uint8_t child, uint64_t address)
1635{
1636 // If this is pipe 0, cache the address. This is needed because
1637 // openWritingPipe() will overwrite the pipe 0 address, so
1638 // startListening() will have to restore it.
1639 if (child == 0) {
1640 memcpy(pipe0_reading_address, &address, addr_width);
1641 _is_p0_rx = true;
1642 }
1643
1644 if (child <= 5) {
1645 // For pipes 2-5, only write the LSB
1646 if (child > 1) {
1647 write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), 1);
1648 }
1649 // avoid overwriting the TX address on pipe 0 while still in TX mode.
1650 // NOTE, the cached RX address on pipe 0 is written when startListening() is called.
1651 else if (static_cast<bool>(config_reg & _BV(PRIM_RX)) || child != 0) {
1652 write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), addr_width);
1653 }
1654
1655 // Note it would be more efficient to set all of the bits for all open
1656 // pipes at once. However, I thought it would make the calling code
1657 // more simple to do it this way.
1658 write_register(EN_RXADDR, static_cast<uint8_t>(read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child]))));
1659 }
1660}
1661
1662/****************************************************************************/
1663
1664void RF24::setAddressWidth(uint8_t a_width)
1665{
1666 a_width = static_cast<uint8_t>(a_width - 2);
1667 if (a_width) {
1668 write_register(SETUP_AW, static_cast<uint8_t>(a_width % 4));
1669 addr_width = static_cast<uint8_t>((a_width % 4) + 2);
1670 }
1671 else {
1672 write_register(SETUP_AW, static_cast<uint8_t>(0));
1673 addr_width = static_cast<uint8_t>(2);
1674 }
1675}
1676
1677/****************************************************************************/
1678
1679void RF24::openReadingPipe(uint8_t child, const uint8_t* address)
1680{
1681 // If this is pipe 0, cache the address. This is needed because
1682 // openWritingPipe() will overwrite the pipe 0 address, so
1683 // startListening() will have to restore it.
1684 if (child == 0) {
1685 memcpy(pipe0_reading_address, address, addr_width);
1686 _is_p0_rx = true;
1687 }
1688 if (child <= 5) {
1689 // For pipes 2-5, only write the LSB
1690 if (child > 1) {
1691 write_register(pgm_read_byte(&child_pipe[child]), address, 1);
1692 }
1693 // avoid overwriting the TX address on pipe 0 while still in TX mode.
1694 // NOTE, the cached RX address on pipe 0 is written when startListening() is called.
1695 else if (static_cast<bool>(config_reg & _BV(PRIM_RX)) || child != 0) {
1696 write_register(pgm_read_byte(&child_pipe[child]), address, addr_width);
1697 }
1698
1699 // Note it would be more efficient to set all of the bits for all open
1700 // pipes at once. However, I thought it would make the calling code
1701 // more simple to do it this way.
1702 write_register(EN_RXADDR, static_cast<uint8_t>(read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child]))));
1703 }
1704}
1705
1706/****************************************************************************/
1707
1708void RF24::closeReadingPipe(uint8_t pipe)
1709{
1710 write_register(EN_RXADDR, static_cast<uint8_t>(read_register(EN_RXADDR) & ~_BV(pgm_read_byte(&child_pipe_enable[pipe]))));
1711 if (!pipe) {
1712 // keep track of pipe 0's RX state to avoid null vs 0 in addr cache
1713 _is_p0_rx = false;
1714 }
1715}
1716
1717/****************************************************************************/
1718
1719void RF24::toggle_features(void)
1720{
1722#if defined(RF24_SPI_PTR)
1723 status = _spi->transfer(ACTIVATE);
1724 _spi->transfer(0x73);
1725#else
1726 status = _SPI.transfer(ACTIVATE);
1727 _SPI.transfer(0x73);
1728#endif
1730}
1731
1732/****************************************************************************/
1733
1735{
1736 // Enable dynamic payload throughout the system
1737
1738 //toggle_features();
1739 write_register(FEATURE, read_register(FEATURE) | _BV(EN_DPL));
1740
1741 IF_RF24_DEBUG(printf_P("FEATURE=%i\r\n", read_register(FEATURE)));
1742
1743 // Enable dynamic payload on all pipes
1744 //
1745 // Not sure the use case of only having dynamic payload on certain
1746 // pipes, so the library does not support it.
1747 write_register(DYNPD, read_register(DYNPD) | _BV(DPL_P5) | _BV(DPL_P4) | _BV(DPL_P3) | _BV(DPL_P2) | _BV(DPL_P1) | _BV(DPL_P0));
1748
1750}
1751
1752/****************************************************************************/
1753
1755{
1756 // Disables dynamic payload throughout the system. Also disables Ack Payloads
1757
1758 //toggle_features();
1759 write_register(FEATURE, 0);
1760
1761 IF_RF24_DEBUG(printf_P("FEATURE=%i\r\n", read_register(FEATURE)));
1762
1763 // Disable dynamic payload on all pipes
1764 //
1765 // Not sure the use case of only having dynamic payload on certain
1766 // pipes, so the library does not support it.
1767 write_register(DYNPD, 0);
1768
1770 ack_payloads_enabled = false;
1771}
1772
1773/****************************************************************************/
1774
1776{
1777 // enable ack payloads and dynamic payload features
1778
1779 if (!ack_payloads_enabled) {
1780 write_register(FEATURE, read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL));
1781
1782 IF_RF24_DEBUG(printf_P("FEATURE=%i\r\n", read_register(FEATURE)));
1783
1784 // Enable dynamic payload on pipes 0 & 1
1785 write_register(DYNPD, read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0));
1787 ack_payloads_enabled = true;
1788 }
1789}
1790
1791/****************************************************************************/
1792
1794{
1795 // disable ack payloads (leave dynamic payload features as is)
1797 write_register(FEATURE, static_cast<uint8_t>(read_register(FEATURE) & ~_BV(EN_ACK_PAY)));
1798
1799 IF_RF24_DEBUG(printf_P("FEATURE=%i\r\n", read_register(FEATURE)));
1800
1801 ack_payloads_enabled = false;
1802 }
1803}
1804
1805/****************************************************************************/
1806
1808{
1809 //
1810 // enable dynamic ack features
1811 //
1812 //toggle_features();
1813 write_register(FEATURE, read_register(FEATURE) | _BV(EN_DYN_ACK));
1814
1815 IF_RF24_DEBUG(printf_P("FEATURE=%i\r\n", read_register(FEATURE)));
1816}
1817
1818/****************************************************************************/
1819
1820bool RF24::writeAckPayload(uint8_t pipe, const void* buf, uint8_t len)
1821{
1823 const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
1824
1825 write_register(W_ACK_PAYLOAD | (pipe & 0x07), current, rf24_min(len, static_cast<uint8_t>(32)));
1826 return !(status & _BV(TX_FULL));
1827 }
1828 return 0;
1829}
1830
1831/****************************************************************************/
1832
1834{
1835 return available();
1836}
1837
1838/****************************************************************************/
1839
1841{
1842 return _is_p_variant;
1843}
1844
1845/****************************************************************************/
1846
1847void RF24::setAutoAck(bool enable)
1848{
1849 if (enable) {
1850 write_register(EN_AA, 0x3F);
1851 }
1852 else {
1853 write_register(EN_AA, 0);
1854 // accommodate ACK payloads feature
1857 }
1858 }
1859}
1860
1861/****************************************************************************/
1862
1863void RF24::setAutoAck(uint8_t pipe, bool enable)
1864{
1865 if (pipe < 6) {
1866 uint8_t en_aa = read_register(EN_AA);
1867 if (enable) {
1868 en_aa |= static_cast<uint8_t>(_BV(pipe));
1869 }
1870 else {
1871 en_aa = static_cast<uint8_t>(en_aa & ~_BV(pipe));
1872 if (ack_payloads_enabled && !pipe) {
1874 }
1875 }
1876 write_register(EN_AA, en_aa);
1877 }
1878}
1879
1880/****************************************************************************/
1881
1883{
1884 return (read_register(CD) & 1);
1885}
1886
1887/****************************************************************************/
1888
1890{
1891 return (read_register(RPD) & 1);
1892}
1893
1894/****************************************************************************/
1895
1896void RF24::setPALevel(uint8_t level, bool lnaEnable)
1897{
1898 uint8_t setup = read_register(RF_SETUP) & static_cast<uint8_t>(0xF8);
1899 setup |= _pa_level_reg_value(level, lnaEnable);
1900 write_register(RF_SETUP, setup);
1901}
1902
1903/****************************************************************************/
1904
1905uint8_t RF24::getPALevel(void)
1906{
1907 return (read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH))) >> 1;
1908}
1909
1910/****************************************************************************/
1911
1912uint8_t RF24::getARC(void)
1913{
1914 return read_register(OBSERVE_TX) & 0x0F;
1915}
1916
1917/****************************************************************************/
1918
1920{
1921 bool result = false;
1922 uint8_t setup = read_register(RF_SETUP);
1923
1924 // HIGH and LOW '00' is 1Mbs - our default
1925 setup = static_cast<uint8_t>(setup & ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)));
1926 setup |= _data_rate_reg_value(speed);
1927
1928 write_register(RF_SETUP, setup);
1929
1930 // Verify our result
1931 if (read_register(RF_SETUP) == setup) {
1932 result = true;
1933 }
1934 return result;
1935}
1936
1937/****************************************************************************/
1938
1940{
1941 rf24_datarate_e result;
1942 uint8_t dr = read_register(RF_SETUP) & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH));
1943
1944 // switch uses RAM (evil!)
1945 // Order matters in our case below
1946 if (dr == _BV(RF_DR_LOW)) {
1947 // '10' = 250KBPS
1948 result = RF24_250KBPS;
1949 }
1950 else if (dr == _BV(RF_DR_HIGH)) {
1951 // '01' = 2MBPS
1952 result = RF24_2MBPS;
1953 }
1954 else {
1955 // '00' = 1MBPS
1956 result = RF24_1MBPS;
1957 }
1958 return result;
1959}
1960
1961/****************************************************************************/
1962
1964{
1965 config_reg = static_cast<uint8_t>(config_reg & ~(_BV(CRCO) | _BV(EN_CRC)));
1966
1967 // switch uses RAM (evil!)
1968 if (length == RF24_CRC_DISABLED) {
1969 // Do nothing, we turned it off above.
1970 }
1971 else if (length == RF24_CRC_8) {
1972 config_reg |= _BV(EN_CRC);
1973 }
1974 else {
1975 config_reg |= _BV(EN_CRC);
1976 config_reg |= _BV(CRCO);
1977 }
1978 write_register(NRF_CONFIG, config_reg);
1979}
1980
1981/****************************************************************************/
1982
1984{
1986 uint8_t AA = read_register(EN_AA);
1987 config_reg = read_register(NRF_CONFIG);
1988
1989 if (config_reg & _BV(EN_CRC) || AA) {
1990 if (config_reg & _BV(CRCO)) {
1991 result = RF24_CRC_16;
1992 }
1993 else {
1994 result = RF24_CRC_8;
1995 }
1996 }
1997
1998 return result;
1999}
2000
2001/****************************************************************************/
2002
2004{
2005 config_reg = static_cast<uint8_t>(config_reg & ~_BV(EN_CRC));
2006 write_register(NRF_CONFIG, config_reg);
2007}
2008
2009/****************************************************************************/
2010void RF24::setRetries(uint8_t delay, uint8_t count)
2011{
2012 write_register(SETUP_RETR, static_cast<uint8_t>(rf24_min(15, delay) << ARD | rf24_min(15, count)));
2013}
2014
2015/****************************************************************************/
2016void RF24::startConstCarrier(rf24_pa_dbm_e level, uint8_t channel)
2017{
2018 stopListening();
2019 write_register(RF_SETUP, read_register(RF_SETUP) | _BV(CONT_WAVE) | _BV(PLL_LOCK));
2020 if (isPVariant()) {
2021 setAutoAck(0);
2022 setRetries(0, 0);
2023 uint8_t dummy_buf[32];
2024 for (uint8_t i = 0; i < 32; ++i)
2025 dummy_buf[i] = 0xFF;
2026
2027 // use write_register() instead of openWritingPipe() to bypass
2028 // truncation of the address with the current RF24::addr_width value
2029 write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&dummy_buf), 5);
2030 flush_tx(); // so we can write to top level
2031
2032 // use write_register() instead of write_payload() to bypass
2033 // truncation of the payload with the current RF24::payload_size value
2034 write_register(W_TX_PAYLOAD, reinterpret_cast<const uint8_t*>(&dummy_buf), 32);
2035
2036 disableCRC();
2037 }
2038 setPALevel(level);
2039 setChannel(channel);
2040 IF_RF24_DEBUG(printf_P(PSTR("RF_SETUP=%02x\r\n"), read_register(RF_SETUP)));
2041 ce(HIGH);
2042 if (isPVariant()) {
2043 delay(1); // datasheet says 1 ms is ok in this instance
2044 reUseTX(); // CE gets toggled here
2045 }
2046}
2047
2048/****************************************************************************/
2049
2051{
2052 /*
2053 * A note from the datasheet:
2054 * Do not use REUSE_TX_PL together with CONT_WAVE=1. When both these
2055 * registers are set the chip does not react when setting CE low. If
2056 * however, both registers are set PWR_UP = 0 will turn TX mode off.
2057 */
2058 powerDown(); // per datasheet recommendation (just to be safe)
2059 write_register(RF_SETUP, static_cast<uint8_t>(read_register(RF_SETUP) & ~_BV(CONT_WAVE) & ~_BV(PLL_LOCK)));
2060 ce(LOW);
2061 flush_tx();
2062 if (isPVariant()) {
2063 // restore the cached TX address
2064 write_register(TX_ADDR, pipe0_writing_address, addr_width);
2065 }
2066}
2067
2068/****************************************************************************/
2069
2070void RF24::toggleAllPipes(bool isEnabled)
2071{
2072 write_register(EN_RXADDR, static_cast<uint8_t>(isEnabled ? 0x3F : 0));
2073}
2074
2075/****************************************************************************/
2076
2077uint8_t RF24::_data_rate_reg_value(rf24_datarate_e speed)
2078{
2079#if !defined(F_CPU) || F_CPU > 20000000
2080 txDelay = 280;
2081#else //16Mhz Arduino
2082 txDelay = 85;
2083#endif
2084 if (speed == RF24_250KBPS) {
2085#if !defined(F_CPU) || F_CPU > 20000000
2086 txDelay = 505;
2087#else //16Mhz Arduino
2088 txDelay = 155;
2089#endif
2090 // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0
2091 // Making it '10'.
2092 return static_cast<uint8_t>(_BV(RF_DR_LOW));
2093 }
2094 else if (speed == RF24_2MBPS) {
2095#if !defined(F_CPU) || F_CPU > 20000000
2096 txDelay = 240;
2097#else // 16Mhz Arduino
2098 txDelay = 65;
2099#endif
2100 // Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
2101 // Making it '01'
2102 return static_cast<uint8_t>(_BV(RF_DR_HIGH));
2103 }
2104 // HIGH and LOW '00' is 1Mbs - our default
2105 return static_cast<uint8_t>(0);
2106}
2107
2108/****************************************************************************/
2109
2110uint8_t RF24::_pa_level_reg_value(uint8_t level, bool lnaEnable)
2111{
2112 // If invalid level, go to max PA
2113 // Else set level as requested
2114 // + lnaEnable (1 or 0) to support the SI24R1 chip extra bit
2115 return static_cast<uint8_t>(((level > RF24_PA_MAX ? static_cast<uint8_t>(RF24_PA_MAX) : level) << 1) + lnaEnable);
2116}
2117
2118/****************************************************************************/
2119
2120void RF24::setRadiation(uint8_t level, rf24_datarate_e speed, bool lnaEnable)
2121{
2122 uint8_t setup = _data_rate_reg_value(speed);
2123 setup |= _pa_level_reg_value(level, lnaEnable);
2124 write_register(RF_SETUP, setup);
2125}
static const PROGMEM char rf24_datarate_e_str_1[]
Definition RF24.cpp:649
static const PROGMEM char rf24_feature_e_str_on[]
Definition RF24.cpp:681
static const PROGMEM char rf24_feature_e_str_open[]
Definition RF24.cpp:683
static const PROGMEM char rf24_feature_e_str_closed[]
Definition RF24.cpp:684
static const PROGMEM char *const rf24_datarate_e_str_P[]
Definition RF24.cpp:651
static const PROGMEM char rf24_pa_dbm_e_str_2[]
Definition RF24.cpp:672
static const PROGMEM char rf24_model_e_str_0[]
Definition RF24.cpp:656
static const PROGMEM char rf24_pa_dbm_e_str_0[]
Definition RF24.cpp:670
static const PROGMEM char *const rf24_crclength_e_str_P[]
Definition RF24.cpp:665
static const PROGMEM char *const rf24_feature_e_str_P[]
Definition RF24.cpp:685
static const PROGMEM char rf24_datarate_e_str_0[]
Definition RF24.cpp:648
static const PROGMEM char rf24_crclength_e_str_2[]
Definition RF24.cpp:664
static const PROGMEM char *const rf24_pa_dbm_e_str_P[]
Definition RF24.cpp:674
static const PROGMEM char rf24_feature_e_str_allowed[]
Definition RF24.cpp:682
static const PROGMEM uint8_t child_pipe[]
Definition RF24.cpp:1631
static const PROGMEM char rf24_model_e_str_1[]
Definition RF24.cpp:657
static const PROGMEM uint8_t child_pipe_enable[]
Definition RF24.cpp:1165
static const PROGMEM char rf24_crclength_e_str_1[]
Definition RF24.cpp:663
static const PROGMEM char rf24_crclength_e_str_0[]
Definition RF24.cpp:662
static const PROGMEM char *const rf24_model_e_str_P[]
Definition RF24.cpp:658
static const PROGMEM char rf24_datarate_e_str_2[]
Definition RF24.cpp:650
static const PROGMEM char rf24_pa_dbm_e_str_1[]
Definition RF24.cpp:671
static const PROGMEM char rf24_pa_dbm_e_str_3[]
Definition RF24.cpp:673
#define RX_PW_P0
Definition RF24.h:186
#define PRIM_RX
Definition RF24.h:203
#define CD
Definition RF24.h:178
#define MASK_MAX_RT
Definition RF24.h:199
#define R_RX_PL_WID
Definition RF24.h:250
#define CONT_WAVE
Definition RF24.h:220
#define EN_ACK_PAY
Definition RF24.h:242
#define EN_DPL
Definition RF24.h:241
#define SETUP_RETR
Definition RF24.h:173
#define CRCO
Definition RF24.h:201
#define RF_PWR_HIGH
Definition RF24.h:270
#define EN_DYN_ACK
Definition RF24.h:243
#define ENAA_P0
Definition RF24.h:209
#define REUSE_TX_PL
Definition RF24.h:256
#define ENAA_P4
Definition RF24.h:205
#define W_REGISTER
Definition RF24.h:247
#define DPL_P2
Definition RF24.h:238
#define R_RX_PAYLOAD
Definition RF24.h:251
#define OBSERVE_TX
Definition RF24.h:177
#define RF24_NOP
Definition RF24.h:257
#define RF_CH
Definition RF24.h:174
#define MASK_RX_DR
Definition RF24.h:197
#define NRF_STATUS
Definition RF24.h:176
#define W_TX_PAYLOAD_NO_ACK
Definition RF24.h:264
#define RX_FULL
Definition RF24.h:233
#define DPL_P4
Definition RF24.h:236
#define W_ACK_PAYLOAD
Definition RF24.h:253
#define DPL_P5
Definition RF24.h:235
#define ENAA_P2
Definition RF24.h:207
#define FIFO_STATUS
Definition RF24.h:192
#define RF_PWR_LOW
Definition RF24.h:269
#define TX_ADDR
Definition RF24.h:185
#define EN_AA
Definition RF24.h:170
#define ARD
Definition RF24.h:217
#define RX_P_NO
Definition RF24.h:226
#define ENAA_P3
Definition RF24.h:206
#define DPL_P1
Definition RF24.h:239
#define FLUSH_RX
Definition RF24.h:255
#define NRF_CONFIG
Definition RF24.h:169
#define EN_RXADDR
Definition RF24.h:171
#define RPD
Definition RF24.h:263
#define FLUSH_TX
Definition RF24.h:254
#define RF_DR_LOW
Definition RF24.h:267
#define RX_ADDR_P2
Definition RF24.h:181
#define RF_DR_HIGH
Definition RF24.h:268
#define DPL_P0
Definition RF24.h:240
#define RX_ADDR_P1
Definition RF24.h:180
#define MASK_TX_DS
Definition RF24.h:198
#define DPL_P3
Definition RF24.h:237
#define RF_SETUP
Definition RF24.h:175
#define RX_ADDR_P0
Definition RF24.h:179
#define FEATURE
Definition RF24.h:194
#define ENAA_P1
Definition RF24.h:208
#define ENAA_P5
Definition RF24.h:204
#define TX_EMPTY
Definition RF24.h:232
#define DYNPD
Definition RF24.h:193
#define EN_CRC
Definition RF24.h:200
#define PWR_UP
Definition RF24.h:202
#define TX_FULL
Definition RF24.h:227
#define SETUP_AW
Definition RF24.h:172
#define PLL_LOCK
Definition RF24.h:219
#define W_TX_PAYLOAD
Definition RF24.h:252
#define RF24_POWERUP_DELAY
Definition RF24_config.h:35
#define sprintf_P
Definition RF24_config.h:66
#define RF24_SPI_SPEED
The default SPI speed (in Hz)
Definition RF24_config.h:44
#define rf24_min(a, b)
Definition RF24_config.h:40
#define FAILURE_HANDLING
Definition RF24_config.h:23
#define rf24_max(a, b)
Definition RF24_config.h:39
void disableAckPayload(void)
Definition RF24.cpp:1793
RF24(rf24_gpio_pin_t _cepin, rf24_gpio_pin_t _cspin, uint32_t _spi_speed=RF24_SPI_SPEED)
Definition RF24.cpp:560
uint16_t sprintfPrettyDetails(char *debugging_information)
Definition RF24.cpp:836
bool begin(void)
Definition RF24.cpp:973
uint8_t getPayloadSize(void)
Definition RF24.cpp:639
bool available(void)
Definition RF24.cpp:1532
bool txStandBy()
Definition RF24.cpp:1443
void endTransaction()
Definition RF24.cpp:135
bool failureDetected
Definition RF24.h:1454
void startListening(void)
Definition RF24.cpp:1144
bool isAckPayloadAvailable(void)
Definition RF24.cpp:1833
void ce(bool level)
Definition RF24.cpp:103
void printPrettyDetails(void)
Definition RF24.cpp:739
void setPayloadSize(uint8_t size)
Definition RF24.cpp:626
bool isValid()
Definition RF24.cpp:1137
bool writeAckPayload(uint8_t pipe, const void *buf, uint8_t len)
Definition RF24.cpp:1820
void stopConstCarrier(void)
Definition RF24.cpp:2050
rf24_fifo_state_e isFifo(bool about_tx)
Definition RF24.cpp:1428
bool dynamic_payloads_enabled
Definition RF24.h:206
void enableDynamicPayloads(void)
Definition RF24.cpp:1734
bool writeFast(const void *buf, uint8_t len)
Definition RF24.cpp:1376
void disableDynamicPayloads(void)
Definition RF24.cpp:1754
void setRetries(uint8_t delay, uint8_t count)
Definition RF24.cpp:2010
bool write(const void *buf, uint8_t len)
Definition RF24.cpp:1291
uint8_t getARC(void)
Definition RF24.cpp:1912
uint8_t flush_rx(void)
Definition RF24.cpp:469
void beginTransaction()
Definition RF24.cpp:117
void powerUp(void)
Definition RF24.cpp:1222
void setChannel(uint8_t channel)
Definition RF24.cpp:613
void disableCRC(void)
Definition RF24.cpp:2003
void enableDynamicAck()
Definition RF24.cpp:1807
bool isPVariant(void)
Definition RF24.cpp:1840
uint8_t getDynamicPayloadSize(void)
Definition RF24.cpp:1519
bool ack_payloads_enabled
Definition RF24.h:202
uint8_t getChannel(void)
Definition RF24.cpp:619
void stopListening(void)
Definition RF24.cpp:1168
rf24_datarate_e getDataRate(void)
Definition RF24.cpp:1939
bool testRPD(void)
Definition RF24.cpp:1889
void setCRCLength(rf24_crclength_e length)
Definition RF24.cpp:1963
void read(void *buf, uint8_t len)
Definition RF24.cpp:1550
uint32_t txDelay
Definition RF24.h:1831
void closeReadingPipe(uint8_t pipe)
Definition RF24.cpp:1708
void read_register(uint8_t reg, uint8_t *buf, uint8_t len)
Definition RF24.cpp:149
void openReadingPipe(uint8_t number, const uint8_t *address)
Definition RF24.cpp:1679
void powerDown(void)
Definition RF24.cpp:1212
void toggleAllPipes(bool isEnabled)
Open or close all data pipes.
Definition RF24.cpp:2070
uint8_t addr_width
Definition RF24.h:204
void setPALevel(uint8_t level, bool lnaEnable=1)
Definition RF24.cpp:1896
rf24_crclength_e getCRCLength(void)
Definition RF24.cpp:1983
void encodeRadioDetails(uint8_t *encoded_status)
Definition RF24.cpp:919
void maskIRQ(bool tx_ok, bool tx_fail, bool rx_ready)
Definition RF24.cpp:1508
void enableAckPayload(void)
Definition RF24.cpp:1775
bool isChipConnected()
Definition RF24.cpp:1130
void startConstCarrier(rf24_pa_dbm_e level, uint8_t channel)
Definition RF24.cpp:2016
void startFastWrite(const void *buf, uint8_t len, const bool multicast, bool startTx=1)
Definition RF24.cpp:1388
uint32_t csDelay
Definition RF24.h:1841
bool testCarrier(void)
Definition RF24.cpp:1882
bool rxFifoFull()
Definition RF24.cpp:1421
void setAddressWidth(uint8_t a_width)
Definition RF24.cpp:1664
void setRadiation(uint8_t level, rf24_datarate_e speed, bool lnaEnable=true)
configure the RF_SETUP register in 1 transaction
Definition RF24.cpp:2120
uint8_t flush_tx(void)
Definition RF24.cpp:478
bool startWrite(const void *buf, uint8_t len, const bool multicast)
Definition RF24.cpp:1401
void printDetails(void)
Definition RF24.cpp:693
void printStatus(uint8_t flags)
Definition RF24.cpp:488
bool writeBlocking(const void *buf, uint8_t len, uint32_t timeout)
Definition RF24.cpp:1299
void reUseTX()
Definition RF24.cpp:1334
bool setDataRate(rf24_datarate_e speed)
Definition RF24.cpp:1919
void setAutoAck(bool enable)
Definition RF24.cpp:1847
void openWritingPipe(const uint8_t *address)
Definition RF24.cpp:1620
uint8_t getPALevel(void)
Definition RF24.cpp:1905
void whatHappened(bool &tx_ok, bool &tx_fail, bool &rx_ready)
Definition RF24.cpp:1562
rf24_crclength_e
Definition RF24.h:102
@ RF24_CRC_16
Definition RF24.h:108
@ RF24_CRC_DISABLED
Definition RF24.h:104
@ RF24_CRC_8
Definition RF24.h:106
rf24_datarate_e
Definition RF24.h:81
@ RF24_2MBPS
Definition RF24.h:85
@ RF24_250KBPS
Definition RF24.h:87
@ RF24_1MBPS
Definition RF24.h:83
rf24_pa_dbm_e
Definition RF24.h:36
@ RF24_PA_MAX
Definition RF24.h:64
#define delay(millisec)
uint16_t rf24_gpio_pin_t
#define pinMode(pin, direction)
#define _BV(x)
#define HIGH
#define OUTPUT
#define printf_P
#define PROGMEM
#define PRIPSTR
#define delayMicroseconds(usec)
#define PSTR(x)
#define _SPI
#define LOW
#define digitalWrite(pin, value)
#define IF_RF24_DEBUG(x)
#define millis()
#define pgm_read_byte(p)
uint8_t clearStatusFlags(uint8_t flags=RF24_IRQ_ALL)
Definition RF24.cpp:1576
uint8_t getStatusFlags()
Definition RF24.cpp:1593
uint8_t update()
Definition RF24.cpp:1600
void setStatusFlags(uint8_t flags=RF24_IRQ_NONE)
Definition RF24.cpp:1584
@ RF24_TX_DS
Represents an event where TX Data Sent successfully.
Definition RF24.h:277
@ RF24_TX_DF
Represents an event where TX Data Failed to send.
Definition RF24.h:275
@ RF24_RX_DR
Represents an event where RX Data is Ready to RF24::read().
Definition RF24.h:279
@ RF24_IRQ_ALL
Equivalent to RF24_RX_DR | RF24_TX_DS | RF24_TX_DF.
Definition RF24.h:281
rf24_fifo_state_e
Definition RF24.h:120
#define RX_ADDR_P3
Definition nRF24L01.h:40
#define ERX_P2
Definition nRF24L01.h:71
#define ERX_P0
Definition nRF24L01.h:73
#define ERX_P4
Definition nRF24L01.h:69
#define W_REGISTER
Definition nRF24L01.h:105
#define RX_ADDR_P5
Definition nRF24L01.h:42
#define ERX_P3
Definition nRF24L01.h:70
#define ERX_P1
Definition nRF24L01.h:72
#define ARC_CNT
Definition nRF24L01.h:87
#define RF_DR_LOW
Definition nRF24L01.h:125
#define RX_ADDR_P2
Definition nRF24L01.h:39
#define ACTIVATE
Definition nRF24L01.h:107
#define RX_ADDR_P1
Definition nRF24L01.h:38
#define RX_ADDR_P0
Definition nRF24L01.h:37
#define PLOS_CNT
Definition nRF24L01.h:86
#define ERX_P5
Definition nRF24L01.h:68
#define RX_ADDR_P4
Definition nRF24L01.h:41