GettingStarted.ino¶

  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use the Serial Monitor to change each node's behavior.
 */
#include <SPI.h>
#include "printf.h"
#include "RF24.h"

#define CE_PIN 7
#define CSN_PIN 8
// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);

// Let these addresses be used for the pair
uint8_t address[][6] = { "1Node", "2Node" };
// It is very helpful to think of an address as a path instead of as
// an identifying device destination

// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 1;  // 0 uses address[0] to transmit, 1 uses address[1] to transmit

// Used to control whether this node is sending or receiving
bool role = false;  // true = TX role, false = RX role

// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;

void setup() {

  Serial.begin(115200);
  while (!Serial) {
    // some boards need to wait to ensure access to serial over USB
  }

  // initialize the transceiver on the SPI bus
  if (!radio.begin()) {
    Serial.println(F("radio hardware is not responding!!"));
    while (1) {}  // hold in infinite loop
  }

  // print example's introductory prompt
  Serial.println(F("RF24/examples/GettingStarted"));

  // To set the radioNumber via the Serial monitor on startup
  Serial.println(F("Which radio is this? Enter '0' or '1'. Defaults to '0'"));
  while (!Serial.available()) {
    // wait for user input
  }
  char input = Serial.parseInt();
  radioNumber = input == 1;
  Serial.print(F("radioNumber = "));
  Serial.println((int)radioNumber);

  // role variable is hardcoded to RX behavior, inform the user of this
  Serial.println(F("*** PRESS 'T' to begin transmitting to the other node"));

  // Set the PA Level low to try preventing power supply related problems
  // because these examples are likely run with nodes in close proximity to
  // each other.
  radio.setPALevel(RF24_PA_LOW);  // RF24_PA_MAX is default.

  // save on transmission time by setting the radio to only transmit the
  // number of bytes we need to transmit a float
  radio.setPayloadSize(sizeof(payload));  // float datatype occupies 4 bytes

  // set the TX address of the RX node into the TX pipe
  radio.openWritingPipe(address[radioNumber]);  // always uses pipe 0

  // set the RX address of the TX node into a RX pipe
  radio.openReadingPipe(1, address[!radioNumber]);  // using pipe 1

  // additional setup specific to the node's role
  if (role) {
    radio.stopListening();  // put radio in TX mode
  } else {
    radio.startListening();  // put radio in RX mode
  }

  // For debugging info
  // printf_begin();             // needed only once for printing details
  // radio.printDetails();       // (smaller) function that prints raw register values
  // radio.printPrettyDetails(); // (larger) function that prints human readable data

}  // setup

void loop() {

  if (role) {
    // This device is a TX node

    unsigned long start_timer = micros();                // start the timer
    bool report = radio.write(&payload, sizeof(float));  // transmit & save the report
    unsigned long end_timer = micros();                  // end the timer

    if (report) {
      Serial.print(F("Transmission successful! "));  // payload was delivered
      Serial.print(F("Time to transmit = "));
      Serial.print(end_timer - start_timer);  // print the timer result
      Serial.print(F(" us. Sent: "));
      Serial.println(payload);  // print payload sent
      payload += 0.01;          // increment float payload
    } else {
      Serial.println(F("Transmission failed or timed out"));  // payload was not delivered
    }

    // to make this example readable in the serial monitor
    delay(1000);  // slow transmissions down by 1 second

  } else {
    // This device is a RX node

    uint8_t pipe;
    if (radio.available(&pipe)) {              // is there a payload? get the pipe number that recieved it
      uint8_t bytes = radio.getPayloadSize();  // get the size of the payload
      radio.read(&payload, bytes);             // fetch payload from FIFO
      Serial.print(F("Received "));
      Serial.print(bytes);  // print the size of the payload
      Serial.print(F(" bytes on pipe "));
      Serial.print(pipe);  // print the pipe number
      Serial.print(F(": "));
      Serial.println(payload);  // print the payload's value
    }
  }  // role

  if (Serial.available()) {
    // change the role via the serial monitor

    char c = toupper(Serial.read());
    if (c == 'T' && !role) {
      // Become the TX node

      role = true;
      Serial.println(F("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK"));
      radio.stopListening();

    } else if (c == 'R' && role) {
      // Become the RX node

      role = false;
      Serial.println(F("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK"));
      radio.startListening();
    }
  }

}  // loop