manualAcknowledgements

See Also

defaultPins.h

examples_pico/manualAcknowledgements.cpp
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/*
 * See documentation at https://nRF24.github.io/RF24
 * See License information at root directory of this library
 * Author: Brendan Doherty (2bndy5)
 */

/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another
 * with manually transmitted (non-automatic) Acknowledgement (ACK) payloads.
 * This example still uses ACK packets, but they have no payloads. Instead the
 * acknowledging response is sent with `write()`. This tactic allows for more
 * updated acknowledgement payload data, where actual ACK payloads' data are
 * outdated by 1 transmission because they have to loaded before receiving a
 * transmission.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use the Serial Terminal to change each node's behavior.
 */
#include "pico/stdlib.h"  // printf(), sleep_ms(), getchar_timeout_us(), to_us_since_boot(), get_absolute_time()
#include "pico/bootrom.h" // reset_usb_boot()
#include <tusb.h>         // tud_cdc_connected()
#include <RF24.h>         // RF24 radio object
#include "defaultPins.h"  // board presumptive default pin numbers for CE_PIN and CSN_PIN

// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);

// Used to control whether this node is sending or receiving
bool role = false; // true = TX node, false = RX node

// For this example, we'll be using a payload containing
// a string & an integer number that will be incremented
// on every successful transmission.
// Make a data structure to store the entire payload of different datatypes
struct PayloadStruct
{
    char message[7]; // only using 6 characters for TX & RX payloads
    uint8_t counter;
};
PayloadStruct payload;

bool setup()
{
    // append a NULL terminating character for printing as a c-string
    payload.message[6] = 0;

    // Let these addresses be used for the pair
    uint8_t address[][6] = {"1Node", "2Node"};
    // It is very helpful to think of an address as a path instead of as
    // an identifying device destination

    // to use different addresses on a pair of radios, we need a variable to
    // uniquely identify which address this radio will use to transmit
    bool radioNumber = 1; // 0 uses address[0] to transmit, 1 uses address[1] to transmit

    // wait here until the CDC ACM (serial port emulation) is connected
    while (!tud_cdc_connected()) {
        sleep_ms(10);
    }

    // initialize the transceiver on the SPI bus
    if (!radio.begin()) {
        printf("radio hardware is not responding!!\n");
        return false;
    }

    // print example's introductory prompt
    printf("RF24/examples_pico/manualAcknowledgements\n");

    // To set the radioNumber via the Serial monitor on startup
    printf("Which radio is this? Enter '0' or '1'. Defaults to '0'\n");
    char input = getchar();
    radioNumber = input == 49;
    printf("radioNumber = %d\n", (int)radioNumber);

    // Set the PA Level low to try preventing power supply related problems
    // because these examples are likely run with nodes in close proximity to
    // each other.
    radio.setPALevel(RF24_PA_LOW); // RF24_PA_MAX is default.

    // save on transmission time by setting the radio to only transmit the
    // number of bytes we need to transmit a float
    radio.setPayloadSize(sizeof(payload)); // char[7] & uint8_t datatypes occupy 8 bytes

    // set the TX address of the RX node into the TX pipe
    radio.openWritingPipe(address[radioNumber]); // always uses pipe 0

    // set the RX address of the TX node into a RX pipe
    radio.openReadingPipe(1, address[!radioNumber]); // using pipe 1

    if (role) {
        // setup the TX node

        memcpy(payload.message, "Hello ", 6); // set the outgoing message
        radio.stopListening();                // put radio in TX mode
    }
    else {
        // setup the RX node

        memcpy(payload.message, "World ", 6); // set the outgoing message
        radio.startListening();               // put radio in RX mode
    }

    // For debugging info
    // printf_begin();             // needed only once for printing details
    // radio.printDetails();       // (smaller) function that prints raw register values
    // radio.printPrettyDetails(); // (larger) function that prints human readable data

    // role variable is hardcoded to RX behavior, inform the user of this
    printf("*** PRESS 'T' to begin transmitting to the other node\n");

    return true;
} // setup()

void loop()
{
    if (role) {
        // This device is a TX node

        uint64_t start_timer = to_us_since_boot(get_absolute_time()); // start the timer
        bool report = radio.write(&payload, sizeof(payload));         // transmit & save the report

        if (report) {
            // transmission successful; wait for response and print results

            radio.startListening();                                              // put in RX mode
            uint64_t start_timeout = to_ms_since_boot(get_absolute_time());      // timer to detect timeout
            while (!radio.available()) {                                         // wait for response
                if (to_ms_since_boot(get_absolute_time()) - start_timeout > 200) // only wait 200 ms
                    break;
            }
            uint64_t end_timer = to_us_since_boot(get_absolute_time()); // end the timer
            radio.stopListening();                                      // put back in TX mode

            // print summary of transactions
            printf("Transmission successful!"); // payload was delivered
            uint8_t pipe;
            if (radio.available(&pipe)) { // is there a payload received
                // print details about outgoing payload
                printf(" Round-trip delay: %llu us. Sent: %s%d",
                       end_timer - start_timer,
                       payload.message,
                       payload.counter);

                PayloadStruct received;
                radio.read(&received, sizeof(received)); // get payload from RX FIFO

                // print details about incoming payload
                printf(" Received %d bytes on pipe %d: %s%d\n",
                       radio.getPayloadSize(),
                       pipe,
                       received.message,
                       received.counter);

                payload.counter = received.counter; // save incoming counter for next outgoing counter
            }
            else {
                printf(" Recieved no response.\n"); // no response received
            }
        }
        else {
            printf("Transmission failed or timed out\n"); // payload was not delivered
        }                                                 // report

        // to make this example readable in the serial terminal
        sleep_ms(1000); // slow transmissions down by 1 second
    }
    else {
        // This device is a RX node

        uint8_t pipe;
        if (radio.available(&pipe)) { // is there a payload? get the pipe number that recieved it
            PayloadStruct received;
            radio.read(&received, sizeof(received)); // get incoming payload
            payload.counter = received.counter + 1;  // increment incoming counter for next outgoing response

            // transmit response & save result to `report`
            radio.stopListening();                      // put in TX mode
            radio.writeFast(&payload, sizeof(payload)); // load response to TX FIFO
            bool report = radio.txStandBy(150);         // keep retrying for 150 ms
            radio.startListening();                     // put back in RX mode

            // print summary of transactions, starting with details about incoming payload
            printf("Received %d bytes on pipe %d: %s%d",
                   radio.getPayloadSize(),
                   pipe,
                   received.message,
                   received.counter);

            if (report) {
                // print outgoing payload and its counter
                printf(" Sent: %s%d", payload.message, payload.counter);
            }
            else {
                printf(" Response failed.\n"); // failed to send response
            }
        }
    } // role

    char input = getchar_timeout_us(0); // get char from buffer for user input
    if (input != PICO_ERROR_TIMEOUT) {
        // change the role via the serial terminal

        if ((input == 'T' || input == 't') && !role) {
            // Become the TX node

            role = true;
            memcpy(payload.message, "Hello ", 6); // set the outgoing message
            printf("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK\n");
            radio.stopListening(); // put in TX mode
        }
        else if ((input == 'R' || input == 'r') && role) {
            // Become the RX node

            role = false;
            memcpy(payload.message, "World ", 6); // set the response message
            printf("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK\n");
            radio.startListening(); // put in RX mode
        }
        else if (input == 'b' || input == 'B') {
            // reset to bootloader
            radio.powerDown();
            reset_usb_boot(0, 0);
        }
    }
} // loop

int main()
{
    stdio_init_all(); // init necessary IO for the RP2040

    while (!setup()) { // if radio.begin() failed
        // hold program in infinite attempts to initialize radio
    }
    while (true) {
        loop();
    }
    return 0; // we will never reach this
}