MulticeiverDemo.cpp¶

  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
/**
 * A simple example of sending data from as many as 6 nRF24L01 transceivers to
 * 1 receiving transceiver. This technique is trademarked by
 * Nordic Semiconductors as "MultiCeiver".
 *
 * This example was written to be used on up to 6 devices acting as TX nodes &
 * only 1 device acting as the RX node (that's a maximum of 7 devices).
 * Use `ctrl+c` to quit at any time.
 */
#include <ctime>       // time()
#include <cstring>     // strcmp()
#include <iostream>    // cin, cout, endl
#include <string>      // string, getline()
#include <time.h>      // CLOCK_MONOTONIC_RAW, timespec, clock_gettime()
#include <RF24/RF24.h> // RF24, RF24_PA_LOW, delay()

using namespace std;

/****************** Linux ***********************/
// Radio CE Pin, CSN Pin, SPI Speed
// CE Pin uses GPIO number with BCM and SPIDEV drivers, other platforms use their own pin numbering
// CS Pin addresses the SPI bus number at /dev/spidev<a>.<b>
// ie: RF24 radio(<ce_pin>, <a>*10+<b>); spidev1.0 is 10, spidev1.1 is 11 etc..
#define CSN_PIN 0
#ifdef MRAA
    #define CE_PIN 15 // GPIO22
#elif defined(RF24_WIRINGPI)
    #define CE_PIN 3 // GPIO22
#else
    #define CE_PIN 22
#endif
// Generic:
RF24 radio(CE_PIN, CSN_PIN);
/****************** Linux (BBB,x86,etc) ***********************/
// See http://nRF24.github.io/RF24/pages.html for more information on usage
// See https://github.com/eclipse/mraa/ for more information on MRAA
// See https://www.kernel.org/doc/Documentation/spi/spidev for more information on SPIDEV

// For this example, we'll be using 6 addresses; 1 for each TX node
// It is very helpful to think of an address as a path instead of as
// an identifying device destination
// Notice that the last byte is the only byte that changes in the last 5
// addresses. This is a limitation of the nRF24L01 transceiver for pipes 2-5
// because they use the same first 4 bytes from pipe 1.
uint64_t address[6] = {0x7878787878LL,
                       0xB3B4B5B6F1LL,
                       0xB3B4B5B6CDLL,
                       0xB3B4B5B6A3LL,
                       0xB3B4B5B60FLL,
                       0xB3B4B5B605LL};

// For this example, we'll be using a payload containing
// a node ID number and a single integer number that will be incremented
// on every successful transmission.
// Make a data structure to use as a payload.
struct PayloadStruct
{
    unsigned int nodeID;
    unsigned int payloadID;
};
PayloadStruct payload;

void setRole();            // prototype to set the node's role
void master(unsigned int); // prototype of a TX node's behavior
void slave();              // prototype of the RX node's behavior
void printHelp(string);    // prototype to function that explain CLI arg usage

// custom defined timer for evaluating transmission time in microseconds
struct timespec startTimer, endTimer;
uint32_t getMicros(); // prototype to get elapsed time in microseconds

int main(int argc, char** argv)
{

    // perform hardware check
    if (!radio.begin()) {
        cout << "radio hardware is not responding!!" << endl;
        return 0; // quit now
    }

    // to use different addresses on a pair of radios, we need a variable to
    // uniquely identify which address this radio will use to transmit
    unsigned int nodeNumber = 'R'; // integers 0-5 = TX node; character 'R' or integer 82 = RX node

    bool foundArgNode = false;
    if (argc > 1) {
        if ((argc - 1) != 2) {
            // CLI arg "-n"/"--node" needs an option specified for it
            // only 1 arg is expected, so only traverse the first "--arg option" pair
            printHelp(string(argv[0]));
            return 0;
        }
        else if (strcmp(argv[1], "-n") == 0 || strcmp(argv[1], "--node") == 0) {
            // "-n" or "--node" has been specified
            foundArgNode = true;
            if ((argv[2][0] - 48) < 6 && (argv[2][0] - 48) >= 0) {
                nodeNumber = argv[2][0] - 48;
            }
            else if (argv[2][0] == 'R' || argv[2][0] == 'r') {
                nodeNumber = 'R';
            }
            else {
                printHelp(string(argv[0]));
                return 0;
            }
        }
        else {
            // "-n"/"--node" arg was not specified
            printHelp(string(argv[0]));
            return 0;
        }
    }

    // print example's name
    cout << argv[0] << endl;

    // Set the PA Level low to try preventing power supply related problems
    // because these examples are likely run with nodes in close proximity to
    // each other.
    radio.setPALevel(RF24_PA_LOW); // RF24_PA_MAX is default.

    // save on transmission time by setting the radio to only transmit the
    // number of bytes we need to transmit a float
    radio.setPayloadSize(sizeof(payload)); // 2x int datatype occupy 8 bytes

    // For debugging info
    // radio.printDetails();       // (smaller) function that prints raw register values
    // radio.printPrettyDetails(); // (larger) function that prints human readable data

    // ready to execute program now
    if (!foundArgNode) {
        setRole(); // calls master() or slave() based on user input
    }
    else {
        nodeNumber < 6 ? master(nodeNumber) : slave();
    }
    return 0;
}

/**
 * set this node's role from stdin stream.
 * this only considers the first char as input.
 */
void setRole()
{

    string input = "";
    while (!input.length()) {
        cout << "*** Enter a number between 0 and 5 (inclusive) to act as\n";
        cout << "    a unique node number that transmits to the RX node.\n";
        cout << "*** PRESS 'R' to begin receiving from the other nodes\n";
        cout << "*** PRESS 'Q' to exit" << endl;
        getline(cin, input);
        if (input.length() >= 1) {
            unsigned int toNumber = (unsigned int)(input[0]) - 48;
            if (toNumber < 6 && toNumber >= 0)
                master(toNumber);
            else if (input[0] == 'R' || input[0] == 'r')
                slave();
            else if (input[0] == 'Q' || input[0] == 'q')
                break;
            else
                cout << input[0] << " is an invalid input. Please try again." << endl;
        }
        input = ""; // stay in the while loop
    }               // while
} // setRole

/**
 * act as unique TX node identified by the `role` number
 */
void master(unsigned int role)
{
    // set the payload's nodeID & reset the payload's identifying number
    payload.nodeID = role;
    payload.payloadID = 0;

    // Set the address on pipe 0 to the RX node.
    radio.stopListening(); // put radio in TX mode
    radio.openWritingPipe(address[role]);

    // According to the datasheet, the auto-retry features's delay value should
    // be "skewed" to allow the RX node to receive 1 transmission at a time.
    // So, use varying delay between retry attempts and 15 (at most) retry attempts
    radio.setRetries(((role * 3) % 12) + 3, 15); // maximum value is 15 for both args

    unsigned int failures = 0;
    while (failures < 6) {
        clock_gettime(CLOCK_MONOTONIC_RAW, &startTimer);      // start the timer
        bool report = radio.write(&payload, sizeof(payload)); // transmit & save the report
        uint32_t timerElapsed = getMicros();                  // end the timer

        if (report) {
            // payload was delivered
            cout << "Transmission of PayloadID ";
            cout << payload.payloadID;             // print payload number
            cout << " as node " << payload.nodeID; // print node number
            cout << " successful! Time to transmit = ";
            cout << timerElapsed << " us" << endl; // print the timer result
        }
        else {
            // payload was not delivered
            failures++;
            cout << "Transmission failed or timed out" << endl;
        }
        payload.payloadID++; // increment payload number

        // to make this example readable in the terminal
        delay(1000); // slow transmissions down by 1 second
    }                // while
    cout << failures << " failures detected. Leaving TX role." << endl;
} // master

/**
 * act as the RX node that receives from up to 6 other TX nodes
 */
void slave()
{

    // Set the addresses for all pipes to TX nodes
    for (uint8_t i = 0; i < 6; ++i)
        radio.openReadingPipe(i, address[i]);

    radio.startListening(); // put radio in RX mode

    time_t startTimer = time(nullptr);       // start a timer
    while (time(nullptr) - startTimer < 6) { // use 6 second timeout
        uint8_t pipe;
        if (radio.available(&pipe)) {                             // is there a payload? get the pipe number that recieved it
            uint8_t bytes = radio.getPayloadSize();               // get the size of the payload
            radio.read(&payload, bytes);                          // fetch payload from FIFO
            cout << "Received " << (unsigned int)bytes;           // print the size of the payload
            cout << " bytes on pipe " << (unsigned int)pipe;      // print the pipe number
            cout << " from node " << payload.nodeID;              // print the payload's origin
            cout << ". PayloadID: " << payload.payloadID << endl; // print the payload's number
            startTimer = time(nullptr);                           // reset timer
        }
    }
    cout << "Nothing received in 6 seconds. Leaving RX role." << endl;
} // slave

/**
 * Calculate the elapsed time in microseconds
 */
uint32_t getMicros()
{
    // this function assumes that the timer was started using
    // `clock_gettime(CLOCK_MONOTONIC_RAW, &startTimer);`

    clock_gettime(CLOCK_MONOTONIC_RAW, &endTimer);
    uint32_t seconds = endTimer.tv_sec - startTimer.tv_sec;
    uint32_t useconds = (endTimer.tv_nsec - startTimer.tv_nsec) / 1000;

    return ((seconds)*1000 + useconds) + 0.5;
}

/**
 * print a manual page of instructions on how to use this example's CLI args
 */
void printHelp(string progName)
{
    cout << "usage: " << progName << " [-h] [-n {0,1,2,3,4,5,r,R}]\n\n"
         << "A simple example of sending data from as many as 6 nRF24L01 transceivers to\n"
         << "1 receiving transceiver. This technique is trademarked by\n"
         << "Nordic Semiconductors as 'MultiCeiver'.\n"
         << "\nThis example was written to be used on up to 6 devices acting as TX nodes with\n"
         << "another device acting as a RX node (that's a total of 7 devices).\n"
         << "\noptional arguments:\n  -h, --help\t\tshow this help message and exit\n"
         << "  -n {0,1,2,3,4,5,r,R}, --node {0,1,2,3,4,5,r,R}"
         << "\n\t\t\t0-5 specifies the identifying node ID number for the TX role."
         << "\n\t\t\t'r' or 'R' specifies the RX role." << endl;
}