GettingStarted.cpp¶

  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use `ctrl+c` to quit at any time.
 */
#include <ctime>       // time()
#include <iostream>    // cin, cout, endl
#include <string>      // string, getline()
#include <time.h>      // CLOCK_MONOTONIC_RAW, timespec, clock_gettime()
#include <RF24/RF24.h> // RF24, RF24_PA_LOW, delay()

using namespace std;

/****************** Linux ***********************/
// Radio CE Pin, CSN Pin, SPI Speed
// CE Pin uses GPIO number with BCM and SPIDEV drivers, other platforms use their own pin numbering
// CS Pin addresses the SPI bus number at /dev/spidev<a>.<b>
// ie: RF24 radio(<ce_pin>, <a>*10+<b>); spidev1.0 is 10, spidev1.1 is 11 etc..
#define CSN_PIN 0
#ifdef MRAA
    #define CE_PIN 15 // GPIO22
#elif defined(RF24_WIRINGPI)
    #define CE_PIN 3 // GPIO22
#else
    #define CE_PIN 22
#endif
// Generic:
RF24 radio(CE_PIN, CSN_PIN);
/****************** Linux (BBB,x86,etc) ***********************/
// See http://nRF24.github.io/RF24/pages.html for more information on usage
// See https://github.com/eclipse/mraa/ for more information on MRAA
// See https://www.kernel.org/doc/Documentation/spi/spidev for more information on SPIDEV

// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;

void setRole(); // prototype to set the node's role
void master();  // prototype of the TX node's behavior
void slave();   // prototype of the RX node's behavior

// custom defined timer for evaluating transmission time in microseconds
struct timespec startTimer, endTimer;
uint32_t getMicros(); // prototype to get elapsed time in microseconds

int main(int argc, char** argv)
{

    // perform hardware check
    if (!radio.begin()) {
        cout << "radio hardware is not responding!!" << endl;
        return 0; // quit now
    }

    // to use different addresses on a pair of radios, we need a variable to
    // uniquely identify which address this radio will use to transmit
    bool radioNumber = 1; // 0 uses address[0] to transmit, 1 uses address[1] to transmit

    // print example's name
    cout << argv[0] << endl;

    // Let these addresses be used for the pair
    uint8_t address[2][6] = {"1Node", "2Node"};
    // It is very helpful to think of an address as a path instead of as
    // an identifying device destination

    // Set the radioNumber via the terminal on startup
    cout << "Which radio is this? Enter '0' or '1'. Defaults to '0' ";
    string input;
    getline(cin, input);
    radioNumber = input.length() > 0 && (uint8_t)input[0] == 49;

    // save on transmission time by setting the radio to only transmit the
    // number of bytes we need to transmit a float
    radio.setPayloadSize(sizeof(payload)); // float datatype occupies 4 bytes

    // Set the PA Level low to try preventing power supply related problems
    // because these examples are likely run with nodes in close proximity to
    // each other.
    radio.setPALevel(RF24_PA_LOW); // RF24_PA_MAX is default.

    // set the TX address of the RX node into the TX pipe
    radio.openWritingPipe(address[radioNumber]); // always uses pipe 0

    // set the RX address of the TX node into a RX pipe
    radio.openReadingPipe(1, address[!radioNumber]); // using pipe 1

    // For debugging info
    // radio.printDetails();       // (smaller) function that prints raw register values
    // radio.printPrettyDetails(); // (larger) function that prints human readable data

    // ready to execute program now
    setRole(); // calls master() or slave() based on user input
    return 0;
}

/**
 * set this node's role from stdin stream.
 * this only considers the first char as input.
 */
void setRole()
{
    string input = "";
    while (!input.length()) {
        cout << "*** PRESS 'T' to begin transmitting to the other node\n";
        cout << "*** PRESS 'R' to begin receiving from the other node\n";
        cout << "*** PRESS 'Q' to exit" << endl;
        getline(cin, input);
        if (input.length() >= 1) {
            if (input[0] == 'T' || input[0] == 't')
                master();
            else if (input[0] == 'R' || input[0] == 'r')
                slave();
            else if (input[0] == 'Q' || input[0] == 'q')
                break;
            else
                cout << input[0] << " is an invalid input. Please try again." << endl;
        }
        input = ""; // stay in the while loop
    }               // while
} // setRole()

/**
 * make this node act as the transmitter
 */
void master()
{
    radio.stopListening(); // put radio in TX mode

    unsigned int failure = 0; // keep track of failures
    while (failure < 6) {
        clock_gettime(CLOCK_MONOTONIC_RAW, &startTimer);    // start the timer
        bool report = radio.write(&payload, sizeof(float)); // transmit & save the report
        uint32_t timerElapsed = getMicros();                // end the timer

        if (report) {
            // payload was delivered
            cout << "Transmission successful! Time to transmit = ";
            cout << timerElapsed;                     // print the timer result
            cout << " us. Sent: " << payload << endl; // print payload sent
            payload += 0.01;                          // increment float payload
        }
        else {
            // payload was not delivered
            cout << "Transmission failed or timed out" << endl;
            failure++;
        }

        // to make this example readable in the terminal
        delay(1000); // slow transmissions down by 1 second
    }
    cout << failure << " failures detected. Leaving TX role." << endl;
}

/**
 * make this node act as the receiver
 */
void slave()
{

    radio.startListening(); // put radio in RX mode

    time_t startTimer = time(nullptr);       // start a timer
    while (time(nullptr) - startTimer < 6) { // use 6 second timeout
        uint8_t pipe;
        if (radio.available(&pipe)) {                        // is there a payload? get the pipe number that recieved it
            uint8_t bytes = radio.getPayloadSize();          // get the size of the payload
            radio.read(&payload, bytes);                     // fetch payload from FIFO
            cout << "Received " << (unsigned int)bytes;      // print the size of the payload
            cout << " bytes on pipe " << (unsigned int)pipe; // print the pipe number
            cout << ": " << payload << endl;                 // print the payload's value
            startTimer = time(nullptr);                      // reset timer
        }
    }
    cout << "Nothing received in 6 seconds. Leaving RX role." << endl;
    radio.stopListening();
}

/**
 * Calculate the elapsed time in microseconds
 */
uint32_t getMicros()
{
    // this function assumes that the timer was started using
    // `clock_gettime(CLOCK_MONOTONIC_RAW, &startTimer);`

    clock_gettime(CLOCK_MONOTONIC_RAW, &endTimer);
    uint32_t seconds = endTimer.tv_sec - startTimer.tv_sec;
    uint32_t useconds = (endTimer.tv_nsec - startTimer.tv_nsec) / 1000;

    return ((seconds)*1000 + useconds) + 0.5;
}